cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319131 a(n) = Sum_{d|n} Sum_{p|d, p prime} p.

Original entry on oeis.org

0, 2, 3, 4, 5, 10, 7, 6, 6, 14, 11, 17, 13, 18, 16, 8, 17, 18, 19, 23, 20, 26, 23, 24, 10, 30, 9, 29, 29, 40, 31, 10, 28, 38, 24, 30, 37, 42, 32, 32, 41, 48, 43, 41, 27, 50, 47, 31, 14, 26, 40, 47, 53, 26, 32, 40, 44, 62, 59, 64, 61, 66, 33, 12, 36, 64, 67, 59, 52, 56
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Inverse Möbius transform of A008472.

Examples

			a(12) = 13 as 12 has 6 divisors and 2 * 6 * (2/3) + 3 * 6 * (1/2) = 17. - _David A. Corneth_, Oct 08 2019
		

Crossrefs

Programs

  • Magma
    [0] cat  [&+[&+[PrimeDivisors(d)[i]:i in [1..#PrimeDivisors(d)]]:d in Set(Divisors(n)) diff {1}]:n in [2..70]]; // Marius A. Burtea, Oct 08 2019
    
  • Magma
    [0] cat [&+[p*#Divisors(n div p):p in PrimeDivisors(n)]:n in [2..70]]; // Marius A. Burtea, Oct 08 2019 (According to the formula given by Ridouane Oudra)
  • Maple
    with(numtheory): seq(add(p*tau(n/p), p in factorset(n)), n=1..80); # Ridouane Oudra, Oct 08 2019
  • Mathematica
    Table[Sum[Total[Select[Divisors[d], PrimeQ]], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, # &, PrimeQ[#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(DivisorSum[k, # &, PrimeQ[#] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
  • PARI
    a(n) = sumdiv(n, d, my(f=factor(d)); vecsum(f[,1])); \\ Michel Marcus, Oct 08 2019
    
  • PARI
    a(n) = my(f = factor(n), nd = numdiv(f)); sum(i = 1, #f~, f[i, 1] * nd / (f[i, 2] + 1) * f[i, 2]) \\ David A. Corneth, Oct 08 2019
    

Formula

G.f.: Sum_{k>=1} A008472(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(A008472(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
a(p^k) = p*k, where p is a prime.
a(n) = Sum_{p|n} p*tau(n/p), where p is a prime and tau(n) = A000005(n). - Ridouane Oudra, Oct 08 2019
a(n) = Sum_{p|n} p*tau(n)*(e_p-1)/(e_p) where e_p is the exponent of p in the factorization of n. - David A. Corneth, Oct 08 2019
a(n) = Sum_{d|n} sopf(d). - Wesley Ivan Hurt, May 23 2021