A319441 Cubes of non-palindromic numbers.
1000, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 91125, 97336, 103823, 110592, 117649, 125000, 132651, 140608
Offset: 1
Examples
2201^3 = 10662526601 is a term.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- G. J. Simmons, Palindrome cubes: Problem B-183, Fibonacci Quart. 8 (1970), no. 5, p. 551.
Programs
-
Magma
[n^3: n in [0..65] | Intseq(n) ne Reverse(Intseq(n))]; // Vincenzo Librandi, Sep 19 2018
-
Mathematica
palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; DeleteCases[Range[10, 110], ?palQ]^3 (* _Vincenzo Librandi, Sep 19 2018 *) Select[Range[100],!PalindromeQ[#]&]^3 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
-
PARI
is_a029742(n)=my(d=digits(n)); d!=Vecrev(d) \\ after Charles R Greathouse IV in A029742 terms(n) = my(i=0, x=1); while(1, if(i==n, break, if(is_a029742(x), print1(x^3, ", "); i++)); x++) /* Print initial 40 terms as follows */ terms(40) \\ Felix Fröhlich, Sep 19 2018
-
Python
def A319441(n): def f(x): return n+x//10**((l:=len(s:=str(x)))-(k:=l+1>>1))-(int(s[k-1::-1])>x%10**k)+10**(k-1+(l&1^1))-1 m, k = n, f(n) while m != k: m, k = k, f(k) return m**3 # Chai Wah Wu, Jul 24 2024
Formula
a(n) = A029742(n)^3.
Comments