cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319441 Cubes of non-palindromic numbers.

Original entry on oeis.org

1000, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 91125, 97336, 103823, 110592, 117649, 125000, 132651, 140608
Offset: 1

Views

Author

Seiichi Manyama, Sep 19 2018

Keywords

Comments

This is not a subsequence of A029742. - Bruno Berselli, Sep 19 2018

Examples

			2201^3 = 10662526601 is a term.
		

Crossrefs

Programs

  • Magma
    [n^3: n in [0..65] | Intseq(n) ne Reverse(Intseq(n))]; // Vincenzo Librandi, Sep 19 2018
    
  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; DeleteCases[Range[10, 110], ?palQ]^3 (* _Vincenzo Librandi, Sep 19 2018 *)
    Select[Range[100],!PalindromeQ[#]&]^3 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
  • PARI
    is_a029742(n)=my(d=digits(n)); d!=Vecrev(d) \\ after Charles R Greathouse IV in A029742
    terms(n) = my(i=0, x=1); while(1, if(i==n, break, if(is_a029742(x), print1(x^3, ", "); i++)); x++)
    /* Print initial 40 terms as follows */
    terms(40) \\ Felix Fröhlich, Sep 19 2018
    
  • Python
    def A319441(n):
        def f(x): return n+x//10**((l:=len(s:=str(x)))-(k:=l+1>>1))-(int(s[k-1::-1])>x%10**k)+10**(k-1+(l&1^1))-1
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m**3 # Chai Wah Wu, Jul 24 2024

Formula

a(n) = A029742(n)^3.