cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A319677 Denominator of A047994(n)/n where A047994 is the unitary totient function.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 2, 13, 7, 15, 16, 17, 9, 19, 5, 7, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 32, 33, 17, 35, 3, 37, 19, 13, 10, 41, 7, 43, 22, 45, 23, 47, 8, 49, 25, 51, 13, 53, 27, 11, 4, 19, 29, 59, 5, 61, 31, 21, 64, 65, 33, 67, 17, 69, 35, 71
Offset: 1

Views

Author

Michel Marcus, Sep 26 2018

Keywords

Crossrefs

Cf. A047994, A030163, A305678, A319481, A319676 (numerators), A323409, A331177 (ordinal transform).

Programs

  • Mathematica
    uphi[n_] := Product[{p, e} = pe; p^e - 1, {pe, FactorInteger[n]}];
    a[n_] := Denominator[uphi[n]/n];
    Array[a, 100] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    a(n)=my(f=factor(n)~); denominator(prod(i=1, #f, f[1, i]^f[2, i]-1)/n);

Formula

a(p) = p, for p prime.
a(A002110(n)) = A060753(n).
a(n) = n / A323409(n) = n / gcd(n, A047994(n)). - Antti Karttunen, Jan 11 2020

A319676 Numerator of A047994(n)/n where A047994 is the unitary totient function.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 7, 8, 2, 10, 1, 12, 3, 8, 15, 16, 4, 18, 3, 4, 5, 22, 7, 24, 6, 26, 9, 28, 4, 30, 31, 20, 8, 24, 2, 36, 9, 8, 7, 40, 2, 42, 15, 32, 11, 46, 5, 48, 12, 32, 9, 52, 13, 8, 3, 12, 14, 58, 2, 60, 15, 16, 63, 48, 10, 66, 12, 44, 12, 70, 7, 72, 18, 16
Offset: 1

Views

Author

Michel Marcus, Sep 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    uphi[n_] := Product[{p, e} = pe; p^e - 1, {pe, FactorInteger[n]}];
    a[n_] := If[n == 1, 1, Numerator[uphi[n]/n]];
    Array[a, 100] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    a(n)=my(f=factor(n)~); numerator(prod(i=1, #f, f[1, i]^f[2, i]-1)/n);

Formula

a(p) = p-1, for p prime (see A006093).
a(A002110(n)) = A038110(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A319677(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.7044422... (A065463). - Amiram Eldar, Nov 21 2022

A335327 Numbers k such that iphi(k) divides k, where iphi is an infinitary analog of Euler's phi function (A091732).

Original entry on oeis.org

1, 2, 6, 12, 24, 72, 120, 240, 480, 1440, 2880, 5760, 8640, 17280, 65280, 86400, 120960, 130560, 259200, 391680, 783360, 1566720, 2350080, 4700160, 23500800, 32901120, 47001600, 70502400, 94003200, 470016000, 1410048000, 2820096000, 4294901760, 5640192000, 8460288000
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2020

Keywords

Examples

			6 is a term since iphi(6) = 2 is a divisor of 6.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); a[1] = 1; iphi[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1);  Select[Range[10^5], Divisible[#,a[#]] &]

A373057 Numbers k such that iphi(k) divides k, where iphi is the infinitary Euler phi function (A064380).

Original entry on oeis.org

2, 6, 8, 10, 60, 70, 120, 128, 136, 9822, 18632, 32768, 32896, 36720, 69726, 73662, 73686, 73734, 85962, 86046, 87114, 87198, 87222, 87258, 87294, 87306, 87342, 87366, 87546, 87558, 88014, 88278, 88302, 88338, 88386, 127326, 128046, 128082, 128382, 128406, 128598
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

Numbers k such that the number of numbers less than k that are infinitarily relatively prime to k is a divisor of k.

Examples

			2 is a term since ipghi(2) = 1 divides 2.
6 is a term since ipghi(6) = 6 divides 6.
60 is a term since ipghi(60) = 30 divides 60.
		

Crossrefs

Cf. A064380.
Similar sequences: A007694, A097296, A319481, A335327.

Programs

  • Mathematica
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; q[n_] := Divisible[n, Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]]; Select[Range[2, 200], q]
  • PARI
    isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1, return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
    is(n) = if(n < 2, 0, !(n % sum(j = 1, n-1, isinfcoprime(j, n))));

A385748 Numbers k such that A384247(k) divides k.

Original entry on oeis.org

1, 2, 6, 8, 12, 24, 32, 54, 96, 108, 128, 192, 216, 240, 384, 486, 512, 864, 972, 1536, 1728, 1944, 2048, 2160, 3072, 3456, 4374, 6000, 6144, 7776, 8192, 8748, 13824, 15552, 17496, 19440, 24576, 27648, 31104, 32768, 39366, 49152, 54000, 55296, 61440, 65280, 69984
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2025

Keywords

Comments

(2^(2^k)-1) * 2^(2^k) is a term for k = 0..5.
Apparently, the only prime factors of any term are 2 and the Fermat primes (A019434), i.e., A092506.
Apparently, except for n = 1, a(n) / A384247(a(n)) is either 2 or 3.

Examples

			  n | a(n) | a(n) / A384247(a(n))
  --+------+---------------------
  1 |    1 | 1 / 1 = 1
  2 |    2 | 2 / 1 = 2
  3 |    6 | 6 / 2 = 3
  4 |    8 | 8 / 4 = 2
  5 |   12 | 12 / 6 = 2
		

Crossrefs

Similar sequences: A007694, A298759, A319481, A335327, A373057.

Programs

  • Mathematica
    f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n]; q[n_] := Divisible[n, iphi[n]]; Select[Range[70000], q]
  • PARI
    iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2))));}
    isok(k) = !( k % iphi(k));
Showing 1-5 of 5 results.