cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341364 Expansion of (1 / theta_4(x) - 1)^3 / 8.

Original entry on oeis.org

1, 6, 24, 77, 216, 552, 1315, 2964, 6387, 13255, 26640, 52074, 99336, 185430, 339483, 610709, 1081227, 1886484, 3247502, 5521365, 9279624, 15429149, 25397088, 41412030, 66928700, 107265576, 170556654, 269164346, 421765920, 656419080, 1015044526, 1559950185, 2383284894
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^3/8, {x, 0, nmax}], x] // Drop[#, 3] &
    nmax = 35; CoefficientList[Series[(1/8) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

G.f.: (1/8) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^3.
a(n) ~ A319552(n)/8 ~ 3*exp(Pi*sqrt(3*n)) / (512*n^(3/2)). - Vaclav Kotesovec, Feb 20 2021

A319553 Expansion of 1/theta_4(q)^8 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 16, 144, 960, 5264, 25056, 106944, 418176, 1520784, 5201232, 16871648, 52252992, 155341248, 445226848, 1234726272, 3323392128, 8704504976, 22234655520, 55498917840, 135595345600, 324759439584, 763505859072, 1764050361152, 4009763323008, 8975341703616, 19800832628336
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), this sequence (b=8), A319554 (b=12).
Cf. A002131, A002448 (theta_4(q)), A004409, A035016.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^8))

Formula

Convolution inverse of A035016.
a(n) = (-1)^n * A004409(n).
a(0) = 1, a(n) = (16/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^8.

A319554 Expansion of 1/theta_4(q)^12 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 24, 312, 2912, 21816, 139152, 783328, 3986112, 18650424, 81251896, 332798544, 1291339296, 4776117216, 16922753616, 57683178432, 189821722688, 604884735288, 1871370360240, 5633654421720, 16535803556064, 47405095227984, 132942579098368, 365211946954656
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), A319553 (b=8), this sequence (b=12).
Cf. A002131, A002448 (theta_4(q)), A004413, A286346.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^12))

Formula

Convolution inverse of A286346.
a(n) = (-1)^n * A004413(n).
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^12.
Showing 1-3 of 3 results.