cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341369 Expansion of (1 / theta_4(x) - 1)^8 / 256.

Original entry on oeis.org

1, 16, 144, 952, 5136, 23904, 99292, 376512, 1324376, 4372632, 13673888, 40787848, 116713350, 321861312, 858693192, 2223428224, 5602833292, 13772292360, 33089930724, 77846837848, 179602530648, 406914172336, 906438716196, 1987418937952, 4293164981849, 9144987747024
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^8/256, {x, 0, nmax}], x] // Drop[#, 8] &
    nmax = 33; CoefficientList[Series[(1/256) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (1/256) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^8.

A319552 Expansion of 1/theta_4(q)^3 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 6, 24, 80, 234, 624, 1552, 3648, 8184, 17654, 36816, 74544, 147056, 283440, 535008, 990912, 1803882, 3232224, 5707624, 9943536, 17106960, 29088352, 48922320, 81438528, 134261584, 219336630, 355242288, 570675904, 909674688, 1439394192, 2261635168, 3529838208
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), this sequence (b=3), A284286 (b=4), A319553 (b=8), A319554 (b=12).
Cf. A002131, A002448 (theta_4(q)), A004404, A213384.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^3))

Formula

Convolution inverse of A213384.
a(n) = (-1)^n * A004404(n).
a(0) = 1, a(n) = (6/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^3.

A319554 Expansion of 1/theta_4(q)^12 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 24, 312, 2912, 21816, 139152, 783328, 3986112, 18650424, 81251896, 332798544, 1291339296, 4776117216, 16922753616, 57683178432, 189821722688, 604884735288, 1871370360240, 5633654421720, 16535803556064, 47405095227984, 132942579098368, 365211946954656
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), A319553 (b=8), this sequence (b=12).
Cf. A002131, A002448 (theta_4(q)), A004413, A286346.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^12))

Formula

Convolution inverse of A286346.
a(n) = (-1)^n * A004413(n).
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^12.
Showing 1-3 of 3 results.