cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A319765 Number of non-isomorphic intersecting multiset partitions of weight n whose dual is also an intersecting multiset partition.

Original entry on oeis.org

1, 1, 3, 6, 15, 31, 74, 156, 358, 792, 1821
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{2},{1,2}}
   {{1},{1},{1}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,2,2}}
   {{1,2,3,3}}
   {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{3},{1,2,3}}
   {{1,1},{1,1}}
   {{1,2},{1,2}}
   {{1,2},{2,2}}
   {{1},{1},{1,1}}
   {{2},{2},{1,2}}
   {{1},{1},{1},{1}}
		

Crossrefs

A319774 Number of intersecting set systems spanning n vertices whose dual is also an intersecting set system.

Original entry on oeis.org

1, 1, 2, 14, 814, 1174774, 909125058112, 291200434263385001951232
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			The a(3) = 14 set systems:
   {{1},{1,2},{1,2,3}}
   {{1},{1,3},{1,2,3}}
   {{2},{1,2},{1,2,3}}
   {{2},{2,3},{1,2,3}}
   {{3},{1,3},{1,2,3}}
   {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1,2},{1,3},{1,2,3}}
   {{1,2},{2,3},{1,2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{1},{1,2},{1,3},{1,2,3}}
   {{2},{1,2},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Intersecting set-systems are A051185.
The unlabeled multiset partition version is A319773.
The covering case is A327037.
The version without strict dual is A327038.
Cointersecting set-systems are A327039.
The BII-numbers of these set-systems are A327061.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[#,Intersection[#1,#2]=={}&]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}] (* Gus Wiseman, Aug 19 2019 *)

Extensions

a(6)-a(7) from Christian Sievers, Aug 18 2024

A327037 Number of pairwise intersecting set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 3, 21, 913, 1183295, 909142733955, 291200434282476769116160
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts pairwise intersecting, covering set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(3) = 21 set-systems:
  {}  {{1}}  {{1,2}}      {{1,2,3}}
             {{1},{1,2}}  {{1},{1,2,3}}
             {{2},{1,2}}  {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{1,2},{1,3},{2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1,2},{1,3},{1,2,3}}
                          {{1,2},{2,3},{1,2,3}}
                          {{1,3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
                          {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Intersecting covering set-systems are A305843.
The unlabeled multiset partition version is A319765.
The case where the dual is strict is A319774.
The BII-numbers of these set-systems are A326912.
The non-covering version is A327038.
Cointersectng covering set-systems are A327040.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]

Formula

Inverse binomial transform of A327038.

Extensions

a(6)-a(7) from Christian Sievers, Aug 18 2024

A327038 Number of pairwise intersecting set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 2, 6, 34, 1020, 1188106, 909149847892, 291200434288840793135801
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts pairwise intersecting set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(2) = 6 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
The a(3) = 34 set-systems:
  {}  {{1}}    {{1}{12}}    {{1}{12}{123}}   {{1}{12}{13}{123}}
      {{2}}    {{1}{13}}    {{1}{13}{123}}   {{2}{12}{23}{123}}
      {{3}}    {{2}{12}}    {{12}{13}{23}}   {{3}{13}{23}{123}}
      {{12}}   {{2}{23}}    {{2}{12}{123}}   {{12}{13}{23}{123}}
      {{13}}   {{3}{13}}    {{2}{23}{123}}
      {{23}}   {{3}{23}}    {{3}{13}{123}}
      {{123}}  {{1}{123}}   {{3}{23}{123}}
               {{2}{123}}   {{12}{13}{123}}
               {{3}{123}}   {{12}{23}{123}}
               {{12}{123}}  {{13}{23}{123}}
               {{13}{123}}
               {{23}{123}}
		

Crossrefs

Intersecting set-systems are A051185.
The unlabeled multiset partition version is A319765.
The BII-numbers of these set-systems are A326912.
The covering case is A327037.
Cointersecting set-systems are A327039.
The case where the dual is strict is A327040.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]

Formula

Binomial transform of A327037.

Extensions

a(6)-a(7) from Christian Sievers, Aug 18 2024

A319766 Number of non-isomorphic strict intersecting multiset partitions (sets of multisets) of weight n whose dual is also a strict intersecting multiset partition.

Original entry on oeis.org

1, 1, 1, 4, 6, 14, 31, 64, 145, 324, 753
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,2,2,2}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{1,2},{2,2}}
5: {{1,1,1,1,1}}
   {{1,1,2,2,2}}
   {{1,2,2,2,2}}
   {{1},{1,1,1,1}}
   {{1},{1,2,2,2}}
   {{2},{1,1,2,2}}
   {{2},{1,2,2,2}}
   {{2},{1,2,3,3}}
   {{1,1},{1,1,1}}
   {{1,1},{1,2,2}}
   {{1,2},{1,2,2}}
   {{1,2},{2,2,2}}
   {{2,2},{1,2,2}}
   {{2},{1,2},{2,2}}
		

Crossrefs

A319768 Number of non-isomorphic strict multiset partitions (sets of multisets) of weight n whose dual is a (not necessarily strict) intersecting multiset partition.

Original entry on oeis.org

1, 1, 2, 5, 11, 25, 63, 144, 364, 905, 2356
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,2,2}}
   {{1,2,3,3}}
   {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{3},{1,2,3}}
   {{1,2},{2,2}}
   {{1},{2},{1,2}}
		

Crossrefs

A319769 Number of non-isomorphic intersecting set multipartitions (multisets of sets) of weight n whose dual is also an intersecting set multipartition.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 16, 26, 38, 61
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set multipartitions:
1: {{1}}
2: {{1,2}}
   {{1},{1}}
3: {{1,2,3}}
   {{2},{1,2}}
   {{1},{1},{1}}
4: {{1,2,3,4}}
   {{3},{1,2,3}}
   {{1,2},{1,2}}
   {{2},{2},{1,2}}
   {{1},{1},{1},{1}}
5: {{1,2,3,4,5}}
   {{4},{1,2,3,4}}
   {{2,3},{1,2,3}}
   {{2},{1,2},{1,2}}
   {{3},{3},{1,2,3}}
   {{2},{2},{2},{1,2}}
   {{1},{1},{1},{1},{1}}
		

Crossrefs

A319773 Number of non-isomorphic intersecting set systems of weight n whose dual is also an intersecting set system.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 2, 4, 5
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(10) = 5 set systems:
1:  {{1}}
3:  {{2},{1,2}}
6:  {{3},{2,3},{1,2,3}}
    {{1,2},{1,3},{2,3}}
7:  {{1,3},{2,3},{1,2,3}}
8:  {{2,4},{3,4},{1,2,3,4}}
    {{3},{1,3},{2,3},{1,2,3}}
9:  {{1,2,4},{1,3,4},{2,3,4}}
    {{4},{2,4},{3,4},{1,2,3,4}}
    {{1,2},{1,3},{1,4},{2,3,4}}
    {{1,2},{1,3},{2,3},{1,2,3}}
10: {{4},{3,4},{2,3,4},{1,2,3,4}}
    {{4},{1,2,4},{1,3,4},{2,3,4}}
    {{1,2},{2,4},{1,3,4},{2,3,4}}
    {{1,4},{2,4},{3,4},{1,2,3,4}}
    {{2,3},{2,4},{3,4},{1,2,3,4}}
		

Crossrefs

A327053 Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 3, 62, 24710, 2076948136, 9221293198653529144, 170141182628636920684331812494864430896
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts covering set-systems whose dual is strict and pairwise intersecting.

Examples

			The a(1) = 1 through a(2) = 3 set-systems:
  {}  {{1}}  {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
The a(3) = 62 set-systems:
  1 2 123    1 2 3 123    1 2 12 13 23   1 2 3 12 13 23   1 2 3 12 13 23 123
  1 3 123    1 12 13 23   1 2 3 12 123   1 2 3 12 13 123
  2 3 123    1 2 12 123   1 2 3 13 123   1 2 3 12 23 123
  1 12 123   1 2 13 123   1 2 3 23 123   1 2 3 13 23 123
  1 13 123   1 2 23 123   1 3 12 13 23   1 2 12 13 23 123
  12 13 23   1 3 12 123   2 3 12 13 23   1 3 12 13 23 123
  2 12 123   1 3 13 123   1 2 12 13 123  2 3 12 13 23 123
  2 23 123   1 3 23 123   1 2 12 23 123
  3 13 123   2 12 13 23   1 2 13 23 123
  3 23 123   2 3 12 123   1 3 12 13 123
  12 13 123  2 3 13 123   1 3 12 23 123
  12 23 123  2 3 23 123   1 3 13 23 123
  13 23 123  3 12 13 23   2 3 12 13 123
             1 12 13 123  2 3 12 23 123
             1 12 23 123  2 3 13 23 123
             1 13 23 123  1 12 13 23 123
             2 12 13 123  2 12 13 23 123
             2 12 23 123  3 12 13 23 123
             2 13 23 123
             3 12 13 123
             3 12 23 123
             3 13 23 123
             12 13 23 123
		

Crossrefs

The pairwise intersecting case is A319774.
The BII-numbers of these set-systems are the intersection of A326947 and A326853.
The non-T_0 version is A327040.
The non-covering version is A327052.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]

Formula

Inverse binomial transform of A327052.

Extensions

a(5)-a(7) from Christian Sievers, Feb 04 2024
Showing 1-9 of 9 results.