cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300446 Expansion of Product_{k>0} (Sum_{m>=0} x^(k*m^2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 8, 12, 12, 17, 23, 27, 32, 41, 52, 61, 77, 91, 110, 134, 159, 188, 228, 271, 314, 380, 444, 518, 612, 713, 832, 976, 1128, 1308, 1529, 1756, 2023, 2343, 2698, 3091, 3555, 4072, 4657, 5343, 6074, 6922, 7912, 8986, 10194, 11590, 13135, 14855
Offset: 0

Views

Author

Seiichi Manyama, May 11 2018

Keywords

Comments

Also the number of partitions of n in which each part occurs a square number (>=0) of times.

Examples

			n | Partitions of n in which each part occurs a square number (>=0) of times
--+-------------------------------------------------------------------------
1 | 1;
2 | 2;
3 | 3 = 2+1;
4 | 4 = 3+1 = 1+1+1+1;
5 | 5 = 4+1 = 3+2;
6 | 6 = 5+1 = 4+2 = 3+2+1 = 2+1+1+1+1;
7 | 7 = 6+1 = 5+2 = 4+3 = 4+2+1 = 3+1+1+1+1;
8 | 8 = 7+1 = 6+2 = 5+3 = 5+2+1 = 4+3+1 = 4+1+1+1+1 = 2+2+2+2;
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&+[x^(k*j^2):j in [0..2*m]]): k in [1..2*m]]) ));  // G. C. Greubel, Oct 29 2018
  • Maple
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else b(n, i-1); for j while
            i*j^2<=n do %+b(n-i*j^2, i-1) od; % fi
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 11 2018
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(EllipticTheta[3, 0, x^k] + 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 25 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(i=1, N, sum(j=0, sqrtint(N\i), x^(i*j^2)))) \\ Seiichi Manyama, Oct 28 2018
    

Formula

G.f.: Product_{k>=1} (theta_3(x^k) + 1)/2, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Oct 25 2018

A321179 a(n) = [x^(n^2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 14, 44, 174, 988, 4314, 20780, 126320, 692328, 3836166, 23160914, 135752866, 803203484, 4902966108, 29745996950, 181712320506, 1124481497694, 6965802854354, 43360326335154, 271658784580760, 1706393926177980, 10757142052998054, 68081390206251952, 432001821971576352
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n^2.

Examples

			Solutions (a_1, a_2, a_3) to the equation a_1^2 + 2*a_2^2 + 3*a_3^2 = 9.
------------------------------------------------------------------------
( 1,  2,  0), ( 1, -2,  0),
(-1,  2,  0), (-1, -2,  0),
( 2,  1,  1), ( 2,  1, -1),
( 2, -1,  1), ( 2, -1, -1),
(-2,  1,  1), (-2,  1, -1),
(-2, -1,  1), (-2, -1, -1),
( 3,  0,  0), (-3,  0,  0).
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n^2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
  • PARI
    {a(n) = polcoeff(prod(i=1, n, 1+2*sum(j=1, sqrtint(n^2\i), x^(i*j^2)+x*O(x^(n^2)))), n^2)}

Formula

a(n) ~ c * d^n / n^(7/4), where d = 6.8137220913147... and c = 0.178176349247... - Vaclav Kotesovec, Oct 30 2018

A321238 a(n) = [x^(n^3)] Product_{k=1..n} Sum_{m>=0} x^(k*m^2).

Original entry on oeis.org

1, 1, 1, 4, 16, 87, 911, 8081, 82494, 1108584, 14559487, 206462480, 3300362073, 54235076625, 939612600043, 17366394088532, 332129019947772, 6615538793829307, 137564490944940832, 2954281836759475893, 65572183746807351880, 1503752010271535590284, 35476544827929325305961
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2018

Keywords

Comments

Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n^3.

Examples

			1*0^2 + 2*0^2 + 3*0^2 + 4*4^2 = 64.
1*0^2 + 2*0^2 + 3*4^2 + 4*2^2 = 64.
1*1^2 + 2*0^2 + 3*3^2 + 4*3^2 = 64.
1*1^2 + 2*4^2 + 3*3^2 + 4*1^2 = 64.
1*2^2 + 2*2^2 + 3*4^2 + 4*1^2 = 64.
1*2^2 + 2*4^2 + 3*2^2 + 4*2^2 = 64.
1*4^2 + 2*0^2 + 3*2^2 + 4*3^2 = 64.
1*4^2 + 2*0^2 + 3*4^2 + 4*0^2 = 64.
1*4^2 + 2*4^2 + 3*0^2 + 4*2^2 = 64.
1*4^2 + 2*4^2 + 3*2^2 + 4*1^2 = 64.
1*5^2 + 2*0^2 + 3*1^2 + 4*3^2 = 64.
1*5^2 + 2*2^2 + 3*3^2 + 4*1^2 = 64.
1*5^2 + 2*4^2 + 3*1^2 + 4*1^2 = 64.
1*6^2 + 2*0^2 + 3*2^2 + 4*2^2 = 64.
1*7^2 + 2*2^2 + 3*1^2 + 4*1^2 = 64.
1*8^2 + 2*0^2 + 3*0^2 + 4*0^2 = 64.
So a(4) = 16.
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff(prod(i=1, n, sum(j=0, sqrtint(n^3\i), x^(i*j^2)+x*O(x^(n^3)))), n^3)}
Showing 1-3 of 3 results.