cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A368095 Number of non-isomorphic set-systems of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 39, 86, 208, 508, 1304
Offset: 0

Views

Author

Gus Wiseman, Dec 24 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 17 set-systems:
  {1}  {12}    {123}      {1234}        {12345}
       {1}{2}  {1}{23}    {1}{234}      {1}{2345}
               {2}{12}    {12}{34}      {12}{345}
               {1}{2}{3}  {13}{23}      {14}{234}
                          {3}{123}      {23}{123}
                          {1}{2}{34}    {4}{1234}
                          {1}{3}{23}    {1}{2}{345}
                          {1}{2}{3}{4}  {1}{23}{45}
                                        {1}{24}{34}
                                        {1}{4}{234}
                                        {2}{13}{23}
                                        {2}{3}{123}
                                        {3}{13}{23}
                                        {4}{12}{34}
                                        {1}{2}{3}{45}
                                        {1}{2}{4}{34}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

For labeled graphs we have A133686, complement A367867.
For unlabeled graphs we have A134964, complement A140637.
For set-systems we have A367902, complement A367903.
These set-systems have BII-numbers A367906, complement A367907.
The complement is A368094, connected A368409.
Repeats allowed: A368098, ranks A368100, complement A368097, ranks A355529.
Minimal multiset partitions not of this type are counted by A368187.
The connected case is A368410.
Factorizations of this type are counted by A368414, complement A368413.
Allowing repeated edges gives A368422, complement A368421.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    Table[Length[Select[bmp[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]], {n,0,10}]

A320808 Regular tetrangle where T(n,k,i) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n, with i columns.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 2, 4, 0, 1, 5, 4, 0, 1, 5, 5, 5, 0, 0, 1, 0, 2, 4, 0, 2, 10, 8, 0, 1, 9, 13, 7, 0, 1, 5, 12, 9, 7, 0, 0, 1, 0, 3, 6, 0, 3, 16, 12, 0, 2, 24, 33, 16, 0, 1, 14, 36, 29, 12, 0, 1, 9, 23, 29
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Tetrangle begins:
  1  0    0      0        0          0
     0 1  0 1    0 1      0 1        0 1
          0 1 2  0 1 2    0 2 4      0 2 4
                 0 1 2 3  0 1 5 4    0 2 10 8
                          0 1 5 5 5  0 1 9 13 7
                                     0 1 5 12 9 7
		

Crossrefs

Triangle sums are A007716. Triangle of row sums is A320801. Triangle of column sums is A317533. Triangle of last columns (without its leading column 1,0,0,0,...) is A055884.

A368410 Number of non-isomorphic connected set-systems of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 15, 32, 80, 198, 528
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 set-systems:
  {1}  {12}  {123}    {1234}    {12345}      {123456}
             {2}{12}  {13}{23}  {14}{234}    {125}{345}
                      {3}{123}  {23}{123}    {134}{234}
                                {4}{1234}    {15}{2345}
                                {2}{13}{23}  {34}{1234}
                                {2}{3}{123}  {5}{12345}
                                {3}{13}{23}  {1}{14}{234}
                                             {12}{13}{23}
                                             {1}{23}{123}
                                             {13}{24}{34}
                                             {14}{24}{34}
                                             {3}{14}{234}
                                             {3}{23}{123}
                                             {3}{4}{1234}
                                             {4}{14}{234}
		

Crossrefs

For unlabeled graphs we have A005703, connected case of A134964.
For labeled graphs we have A129271, connected case of A133686.
The complement for labeled graphs is A140638, connected case of A367867.
The complement without connectedness is A367903, ranks A367907.
Without connectedness we have A368095, ranks A367906,
Complement with repeats: A368097, connected case of A368411, ranks A355529.
The complement is counted by A368409, connected case of A368094.
With repeats allowed: A368412, connected case of A368098, ranks A368100.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]

A321254 Regular triangle where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with multiset density -1 <= k <= n-2.

Original entry on oeis.org

1, 3, 0, 6, 0, 0, 16, 1, 0, 0, 37, 3, 0, 0, 0, 105, 18, 2, 0, 0, 0, 279, 68, 7, 0, 0, 0, 0, 817, 293, 46, 3, 0, 0, 0, 0, 2387, 1141, 228, 17, 1, 0, 0, 0, 0, 7269, 4511, 1189, 135, 9, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.

Examples

			Triangle begins:
     1
     3    0
     6    0    0
    16    1    0    0
    37    3    0    0    0
   105   18    2    0    0    0
   279   68    7    0    0    0    0
   817  293   46    3    0    0    0    0
  2387 1141  228   17    1    0    0    0    0
  7269 4511 1189  135    9    0    0    0    0    0
		

Crossrefs

First column is A321229. Row sums are A007718.

A320801 Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3
   0   1   3   6
   0   1   6  10  16
   0   1   6  20  30  34
   0   1   9  31  75  92  90
   0   1   9  45 126 246 272 211
   0   1  12  60 223 501 839 823 558
		

Crossrefs

Row sums are A007716. Last column is A049311.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
    G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x,y], [x^t,y^t])) + O(x*x^n))); s/n!}
    T(n)=[Vecrev(p) | p<-Vec(G(n))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 16 2024

A321253 Number of non-isomorphic strict connected weight-n multiset partitions with multiset density -1.

Original entry on oeis.org

0, 1, 2, 5, 12, 28, 78, 202, 578, 1650, 4904
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 28 multiset partitions:
  {{1}}  {{1,1}}  {{1,1,1}}    {{1,1,1,1}}      {{1,1,1,1,1}}
         {{1,2}}  {{1,2,2}}    {{1,1,2,2}}      {{1,1,2,2,2}}
                  {{1,2,3}}    {{1,2,2,2}}      {{1,2,2,2,2}}
                  {{1},{1,1}}  {{1,2,3,3}}      {{1,2,2,3,3}}
                  {{2},{1,2}}  {{1,2,3,4}}      {{1,2,3,3,3}}
                               {{1},{1,1,1}}    {{1,2,3,4,4}}
                               {{1},{1,2,2}}    {{1,2,3,4,5}}
                               {{1,2},{2,2}}    {{1},{1,1,1,1}}
                               {{1,3},{2,3}}    {{1,1},{1,1,1}}
                               {{2},{1,2,2}}    {{1,1},{1,2,2}}
                               {{3},{1,2,3}}    {{1},{1,2,2,2}}
                               {{1},{2},{1,2}}  {{1,2},{2,2,2}}
                                                {{1,2},{2,3,3}}
                                                {{1,3},{2,3,3}}
                                                {{1,4},{2,3,4}}
                                                {{2},{1,1,2,2}}
                                                {{2},{1,2,2,2}}
                                                {{2},{1,2,3,3}}
                                                {{2,2},{1,2,2}}
                                                {{3},{1,2,3,3}}
                                                {{3,3},{1,2,3}}
                                                {{4},{1,2,3,4}}
                                                {{1},{1,2},{2,2}}
                                                {{1},{2},{1,2,2}}
                                                {{2},{1,2},{2,2}}
                                                {{2},{1,3},{2,3}}
                                                {{2},{3},{1,2,3}}
                                                {{3},{1,3},{2,3}}
		

Crossrefs

A322110 Number of non-isomorphic connected multiset partitions of weight n that cannot be capped by a tree.

Original entry on oeis.org

1, 1, 3, 6, 15, 32, 86, 216, 628, 1836, 5822
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
The density of a multiset partition is defined to be the sum of numbers of distinct elements in each part, minus the number of parts, minus the total number of distinct elements in the whole partition. A multiset partition is a tree if it has more than one part, is connected, and has density -1. A cap is a certain kind of non-transitive coarsening of a multiset partition. For example, the four caps of {{1,1},{1,2},{2,2}} are {{1,1},{1,2},{2,2}}, {{1,1},{1,2,2}}, {{1,1,2},{2,2}}, {{1,1,2,2}}. - Gus Wiseman, Feb 05 2021

Examples

			The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8).
Non-isomorphic representatives of the a(1) = 1 through a(5) = 32 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1,1}}    {{1,2,3,3}}        {{1,2,2,3,3}}
                    {{2},{1,2}}    {{1,2,3,4}}        {{1,2,3,3,3}}
                    {{1},{1},{1}}  {{1},{1,1,1}}      {{1,2,3,4,4}}
                                   {{1,1},{1,1}}      {{1,2,3,4,5}}
                                   {{1},{1,2,2}}      {{1},{1,1,1,1}}
                                   {{1,2},{1,2}}      {{1,1},{1,1,1}}
                                   {{2},{1,2,2}}      {{1},{1,2,2,2}}
                                   {{3},{1,2,3}}      {{1,2},{1,2,2}}
                                   {{1},{1},{1,1}}    {{2},{1,1,2,2}}
                                   {{1},{2},{1,2}}    {{2},{1,2,2,2}}
                                   {{2},{2},{1,2}}    {{2},{1,2,3,3}}
                                   {{1},{1},{1},{1}}  {{2,2},{1,2,2}}
                                                      {{2,3},{1,2,3}}
                                                      {{3},{1,2,3,3}}
                                                      {{4},{1,2,3,4}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1,2,2}}
                                                      {{1},{2},{1,2,2}}
                                                      {{2},{1,2},{1,2}}
                                                      {{2},{1,2},{2,2}}
                                                      {{2},{2},{1,2,2}}
                                                      {{2},{3},{1,2,3}}
                                                      {{3},{1,3},{2,3}}
                                                      {{3},{3},{1,2,3}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{2},{2},{1,2}}
                                                      {{2},{2},{2},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Non-isomorphic tree multiset partitions are counted by A321229.
The weak-antichain case is counted by A322117.
The case without singletons is counted by A322118.

Extensions

Corrected by Gus Wiseman, Jan 27 2021

A322118 Number of non-isomorphic connected multiset partitions of weight n with no singletons that cannot be capped by a tree.

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 29, 55, 155, 386, 1171
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The density of a multiset partition is defined to be the sum of numbers of distinct elements in each part, minus the number of parts, minus the total number of distinct elements in the whole partition. A multiset partition is a tree if it has more than one part, is connected, and has density -1. A cap is a certain kind of non-transitive coarsening of a multiset partition. For example, the four caps of {{1,1},{1,2},{2,2}} are {{1,1},{1,2},{2,2}}, {{1,1},{1,2,2}}, {{1,1,2},{2,2}}, {{1,1,2,2}}. - Gus Wiseman, Feb 05 2021

Examples

			The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8).
Non-isomorphic representatives of the a(2) = 2 through a(6) = 29 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}    {{1,1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}    {{1,1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}    {{1,1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}    {{1,1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}    {{1,2,2,2,2,2}}
                      {{1,1},{1,1}}  {{1,2,3,4,4}}    {{1,2,2,3,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,4,5}}    {{1,2,3,3,3,3}}
                                     {{1,1},{1,1,1}}  {{1,2,3,3,4,4}}
                                     {{1,2},{1,2,2}}  {{1,2,3,4,4,4}}
                                     {{2,2},{1,2,2}}  {{1,2,3,4,5,5}}
                                     {{2,3},{1,2,3}}  {{1,2,3,4,5,6}}
                                                      {{1,1},{1,1,1,1}}
                                                      {{1,1,1},{1,1,1}}
                                                      {{1,1,2},{1,2,2}}
                                                      {{1,2},{1,1,2,2}}
                                                      {{1,2},{1,2,2,2}}
                                                      {{1,2},{1,2,3,3}}
                                                      {{1,2,2},{1,2,2}}
                                                      {{1,2,3},{1,2,3}}
                                                      {{1,2,3},{2,3,3}}
                                                      {{1,3,4},{2,3,4}}
                                                      {{2,2},{1,1,2,2}}
                                                      {{2,2},{1,2,2,2}}
                                                      {{2,3},{1,2,3,3}}
                                                      {{3,3},{1,2,3,3}}
                                                      {{3,4},{1,2,3,4}}
                                                      {{1,1},{1,1},{1,1}}
                                                      {{1,2},{1,2},{1,2}}
                                                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Non-isomorphic tree multiset partitions are counted by A321229, or A321231 without singletons.
The version with singletons is A322110.
The weak-antichain case is counted by A322138, or A322117 with singletons.

Extensions

Definition corrected by Gus Wiseman, Feb 05 2021

A321680 Number of non-isomorphic weight-n connected antichains (not necessarily strict) of multisets with multiset density -1.

Original entry on oeis.org

1, 1, 3, 4, 9, 14, 39, 80, 216, 538, 1460
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset trees:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1},{1}}  {{1,2,3,3}}        {{1,2,2,3,3}}
                                   {{1,2,3,4}}        {{1,2,3,3,3}}
                                   {{1,1},{1,1}}      {{1,2,3,4,4}}
                                   {{1,2},{2,2}}      {{1,2,3,4,5}}
                                   {{1,3},{2,3}}      {{1,1},{1,2,2}}
                                   {{1},{1},{1},{1}}  {{1,2},{2,2,2}}
                                                      {{1,2},{2,3,3}}
                                                      {{1,3},{2,3,3}}
                                                      {{1,4},{2,3,4}}
                                                      {{3,3},{1,2,3}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

A368096 Triangle read by rows where T(n,k) is the number of non-isomorphic set-systems of length k and weight n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 5, 8, 3, 1, 0, 1, 8, 18, 13, 3, 1, 0, 1, 9, 32, 37, 15, 3, 1, 0, 1, 13, 55, 96, 59, 16, 3, 1, 0, 1, 14, 91, 209, 196, 74, 16, 3, 1, 0, 1, 19, 138, 449, 573, 313, 82, 16, 3, 1, 0, 1, 20, 206, 863, 1529, 1147, 403, 84, 16, 3, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 28 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets.
Conjecture: Column k = 2 is A101881.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   2   1
   0   1   4   3   1
   0   1   5   8   3   1
   0   1   8  18  13   3   1
   0   1   9  32  37  15   3   1
   0   1  13  55  96  59  16   3   1
   0   1  14  91 209 196  74  16   3   1
   0   1  19 138 449 573 313  82  16   3   1
   ...
Non-isomorphic representatives of the set-systems counted in row n = 5:
  .  {12345}  {1}{1234}  {1}{2}{123}  {1}{2}{3}{12}  {1}{2}{3}{4}{5}
              {1}{2345}  {1}{2}{134}  {1}{2}{3}{14}
              {12}{123}  {1}{2}{345}  {1}{2}{3}{45}
              {12}{134}  {1}{12}{13}
              {12}{345}  {1}{12}{23}
                         {1}{12}{34}
                         {1}{23}{24}
                         {1}{23}{45}
		

Crossrefs

Row sums are A283877, connected case A300913.
For multiset partitions we have A317533.
Counting connected components instead of edges gives A321194.
For set multipartitions we have A334550.
For strict multiset partitions we have A368099.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A049311 counts non-isomorphic set multipartitions, connected A056156.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A316980 counts non-isomorphic strict multiset partitions, connected A319557.
A319559 counts non-isomorphic T_0 set-systems, connected A319566.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&And@@UnsameQ@@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!}
    T(n)={[Vecrev(p) | p <- Vec(G(n))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Extensions

Terms a(66) and beyond from Andrew Howroyd, Jan 11 2024
Showing 1-10 of 14 results. Next