cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A345197 Concatenation of square matrices A(n), each read by rows, where A(n)(k,i) is the number of compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 0, 0, 3, 4, 3, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The matrices for n = 1..7:
  1   0 1   0 0 1   0 0 0 1   0 0 0 0 1   0 0 0 0 0 1   0 0 0 0 0 0 1
      1 0   1 1 0   1 1 1 0   1 1 1 1 0   1 1 1 1 1 0   1 1 1 1 1 1 0
            0 1 0   0 1 2 0   0 1 2 3 0   0 1 2 3 4 0   0 1 2 3 4 5 0
                    0 1 0 0   0 2 2 0 0   0 3 4 3 0 0   0 4 6 6 4 0 0
                              0 0 1 0 0   0 0 2 3 0 0   0 0 3 6 6 0 0
                                          0 0 1 0 0 0   0 0 3 3 0 0 0
                                                        0 0 0 1 0 0 0
Matrix n = 5 counts the following compositions:
           i=-3:        i=-1:          i=1:            i=3:        i=5:
        -----------------------------------------------------------------
   k=1: |    0            0             0               0          (5)
   k=2: |   (14)         (23)          (32)            (41)         0
   k=3: |    0          (131)       (221)(122)   (311)(113)(212)    0
   k=4: |    0       (1211)(1112)  (2111)(1121)         0           0
   k=5: |    0            0          (11111)            0           0
		

Crossrefs

The number of nonzero terms in each matrix appears to be A000096.
The number of zeros in each matrix appears to be A000124.
Row sums and column sums both appear to be A007318 (Pascal's triangle).
The matrix sums are A131577.
Antidiagonal sums appear to be A163493.
The reverse-alternating version is also A345197 (this sequence).
Antidiagonals are A345907.
Traces are A345908.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Other tetrangles: A318393, A318816, A320808, A321912.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&&ats[#]==i&]],{n,0,6},{k,1,n},{i,-n+2,n,2}]

A360071 Regular tetrangle where T(n,k,i) = number of integer partitions of n of length k with i distinct parts.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 1, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2023

Keywords

Comments

I call this a tetrangle because it is a sequence of finite triangles. - Gus Wiseman, Jan 30 2023

Examples

			Tetrangle begins:
  1   1     1       1         1           1             1
      1 0   0 1     1 1       0 2         1 2           0 3
            1 0 0   0 1 0     0 2 0       1 1 1         0 3 1
                    1 0 0 0   0 1 0 0     0 2 0 0       0 2 1 0
                              1 0 0 0 0   0 1 0 0 0     0 2 0 0 0
                                          1 0 0 0 0 0   0 1 0 0 0 0
                                                        1 0 0 0 0 0 0
For example, finite triangle n = 5 counts the following partitions:
    (5)
     .    (41)(32)
     .   (311)(221)  .
     .     (2111)    .   .
  (11111)     .      .   .   .
		

Crossrefs

Row sums are A008284 (partitions by number of parts), reverse A058398.
First columns i = 1 are A051731.
Last columns i = k are A060016.
Column sums are A116608 (partitions by number of distinct parts).
Positive terms are counted by A360072.
A000041 counts partitions, strict A000009.
Other tetrangles: A318393, A318816, A320808, A334433, A345197.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[#]==k&&Length[Union[#]]==i&]],{n,1,9},{k,1,n},{i,1,k}]

A054976 Number of binary n X n matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 3, 17, 179, 3835, 200082, 29610804, 13702979132, 20677458750966, 103609939177198046, 1745061194503344181714, 99860890306900024150675406, 19611238933283757244479826044874, 13340750149227624084760722122669739026, 31706433098827528779057124372265863803044450
Offset: 1

Views

Author

Vladeta Jovovic, May 27 2000

Keywords

Comments

Also the number of non-isomorphic set multipartitions (multisets of sets) with n parts and n vertices. - Gus Wiseman, Nov 18 2018

Examples

			From _Gus Wiseman_, Nov 18 2018: (Start)
Inequivalent representatives of the a(3) = 17 matrices:
  100 100 100 100 100 010 010 001 001 001 001 110 101 101 011 011 111
  100 010 001 011 011 001 101 001 101 011 111 101 011 011 011 111 111
  011 001 011 011 111 111 011 111 011 111 111 011 011 111 111 111 111
Non-isomorphic representatives of the a(1) = 1 through a(3) = 17 set multipartitions:
  {{1}}  {{1},{2}}      {{1},{2},{3}}
         {{2},{1,2}}    {{1},{1},{2,3}}
         {{1,2},{1,2}}  {{1},{3},{2,3}}
                        {{1},{2,3},{2,3}}
                        {{2},{1,3},{2,3}}
                        {{2},{3},{1,2,3}}
                        {{3},{1,3},{2,3}}
                        {{3},{3},{1,2,3}}
                        {{1,2},{1,3},{2,3}}
                        {{1},{2,3},{1,2,3}}
                        {{1,3},{2,3},{2,3}}
                        {{3},{2,3},{1,2,3}}
                        {{1,3},{2,3},{1,2,3}}
                        {{2,3},{2,3},{1,2,3}}
                        {{3},{1,2,3},{1,2,3}}
                        {{2,3},{1,2,3},{1,2,3}}
                        {{1,2,3},{1,2,3},{1,2,3}}
(End)
		

Crossrefs

Column sums of A057150.

Programs

Formula

a(n) = A002724(n) - 2*A002725(n-1) + A002724(n-1).

Extensions

More terms from David Wasserman, Mar 06 2002
Terms a(14) and beyond from Andrew Howroyd, Apr 11 2020

A055884 Euler transform of partition triangle A008284.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Number of multiset partitions of length-k integer partitions of n. - Gus Wiseman, Nov 09 2018

Examples

			From _Gus Wiseman_, Nov 09 2018: (Start)
Triangle begins:
   1
   1   2
   1   2   3
   1   4   4   5
   1   4   8   7   7
   1   6  12  16  12  11
   1   6  17  25  28  19  15
   1   8  22  43  49  48  30  22
   1   8  30  58  87  88  77  45  30
   ...
The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions:
  {{5}}   {{1,4}}     {{1,1,3}}       {{1,1,1,2}}         {{1,1,1,1,1}}
          {{2,3}}     {{1,2,2}}      {{1},{1,1,2}}       {{1},{1,1,1,1}}
         {{1},{4}}   {{1},{1,3}}     {{1,1},{1,2}}       {{1,1},{1,1,1}}
         {{2},{3}}   {{1},{2,2}}     {{2},{1,1,1}}      {{1},{1},{1,1,1}}
                     {{2},{1,2}}    {{1},{1},{1,2}}     {{1},{1,1},{1,1}}
                     {{3},{1,1}}    {{1},{2},{1,1}}    {{1},{1},{1},{1,1}}
                    {{1},{1},{3}}  {{1},{1},{1},{2}}  {{1},{1},{1},{1},{1}}
                    {{1},{2},{2}}
(End)
		

Crossrefs

Row sums give A001970.
Main diagonal gives A000041.
Columns k=1-2 give: A057427, A052928.
T(n+2,n+1) gives A000070.
T(2n,n) gives A360468.

Programs

  • Maple
    h:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
        end:
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n,k), k=1..n), n=1..12);  # Alois P. Heinz, Feb 17 2023
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)

A321449 Regular triangle read by rows where T(n,k) is the number of twice-partitions of n with a combined total of k parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 5, 5, 0, 1, 4, 8, 8, 7, 0, 1, 6, 13, 19, 16, 11, 0, 1, 6, 17, 27, 32, 24, 15, 0, 1, 8, 24, 47, 61, 62, 41, 22, 0, 1, 8, 30, 63, 99, 111, 100, 61, 30, 0, 1, 10, 38, 94, 158, 209, 210, 170, 95, 42, 0, 1, 10, 45, 119, 229, 328, 382, 348, 259, 136, 56
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

A twice partition of n (A063834) is a choice of an integer partition of each part in an integer partition of n.

Examples

			Triangle begins:
   1
   0   1
   0   1   2
   0   1   2   3
   0   1   4   5   5
   0   1   4   8   8   7
   0   1   6  13  19  16  11
   0   1   6  17  27  32  24  15
   0   1   8  24  47  61  62  41  22
   0   1   8  30  63  99 111 100  61  30
The sixth row {0, 1, 6, 13, 19, 16, 11} counts the following twice-partitions:
  (6)  (33)    (222)      (2211)        (21111)          (111111)
       (42)    (321)      (3111)        (1111)(2)        (111)(111)
       (51)    (411)      (111)(3)      (111)(21)        (1111)(11)
       (3)(3)  (21)(3)    (211)(2)      (21)(111)        (11111)(1)
       (4)(2)  (22)(2)    (21)(21)      (211)(11)        (11)(11)(11)
       (5)(1)  (31)(2)    (22)(11)      (2111)(1)        (111)(11)(1)
               (3)(21)    (221)(1)      (11)(11)(2)      (1111)(1)(1)
               (32)(1)    (3)(111)      (111)(2)(1)      (11)(11)(1)(1)
               (4)(11)    (31)(11)      (11)(2)(11)      (111)(1)(1)(1)
               (41)(1)    (311)(1)      (2)(11)(11)      (11)(1)(1)(1)(1)
               (2)(2)(2)  (11)(2)(2)    (21)(11)(1)      (1)(1)(1)(1)(1)(1)
               (3)(2)(1)  (2)(11)(2)    (211)(1)(1)
               (4)(1)(1)  (21)(2)(1)    (11)(2)(1)(1)
                          (2)(2)(11)    (2)(11)(1)(1)
                          (22)(1)(1)    (21)(1)(1)(1)
                          (3)(11)(1)    (2)(1)(1)(1)(1)
                          (31)(1)(1)
                          (2)(2)(1)(1)
                          (3)(1)(1)(1)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          g(n, i-1)+ `if`(i>n, 0, expand(g(n-i, i)*x)))
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          b(n, i-1)+ `if`(i>n, 0, expand(b(n-i, i)*g(i$2))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 11 2018
  • Mathematica
    Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn],Length[Join@@#]==k&],{ptn,IntegerPartitions[n]}]],{n,0,10},{k,0,n}]
    (* Second program: *)
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, x^n,
         g[n, i - 1] + If[i > n, 0, Expand[g[n - i, i]*x]]];
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n,
         b[n, i - 1] + If[i > n, 0, Expand[b[n - i, i]*g[i, i]]]];
    T[n_] := CoefficientList[b[n, n], x];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

O.g.f.: Product_{n >= 0} 1/(1 - x^n * (Sum_{0 <= k <= n} A008284(n,k) * t^k)).

A345908 Traces of the matrices (A345197) counting integer compositions by length and alternating sum.

Original entry on oeis.org

1, 1, 0, 1, 3, 3, 6, 15, 24, 43, 92, 171, 315, 629, 1218, 2313, 4523, 8835, 17076, 33299, 65169
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. Here, the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. So a(n) is the number of compositions of n of length (n + s)/2, where s is the alternating sum of the composition.

Examples

			The a(0) = 1 through a(7) = 15 compositions of n = 0..7 of length (n + s)/2 where s = alternating sum (empty column indicated by dot):
  ()  (1)  .  (2,1)  (2,2)    (2,3)    (2,4)      (2,5)
                     (1,1,2)  (1,2,2)  (1,3,2)    (1,4,2)
                     (2,1,1)  (2,2,1)  (2,3,1)    (2,4,1)
                                       (1,1,3,1)  (1,1,3,2)
                                       (2,1,2,1)  (1,2,3,1)
                                       (3,1,1,1)  (2,1,2,2)
                                                  (2,2,2,1)
                                                  (3,1,1,2)
                                                  (3,2,1,1)
                                                  (1,1,1,1,3)
                                                  (1,1,2,1,2)
                                                  (1,1,3,1,1)
                                                  (2,1,1,1,2)
                                                  (2,1,2,1,1)
                                                  (3,1,1,1,1)
		

Crossrefs

Traces of the matrices given by A345197.
Diagonals and antidiagonals of the same matrices are A346632 and A345907.
Row sums of A346632.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==(n+ats[#])/2&]],{n,0,15}]

A321760 Number of non-isomorphic multiset partitions of weight n with no constant parts or vertices that appear in only one part.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 7, 9, 37, 79, 273, 755, 2648, 8432, 29872, 104624, 384759, 1432655, 5502563, 21533141, 86291313, 352654980, 1471073073, 6253397866, 27083003687, 119399628021, 535591458635, 2443030798539, 11326169401988, 53343974825122, 255121588496338
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n in which every row and column has at least two nonzero entries.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(7) = 9 multiset partitions:
  {{1,2},{1,2}}  {{1,2},{1,2,2}}  {{1,1,2},{1,2,2}}    {{1,1,2},{1,2,2,2}}
                                  {{1,2},{1,1,2,2}}    {{1,2},{1,1,2,2,2}}
                                  {{1,2},{1,2,2,2}}    {{1,2},{1,2,2,2,2}}
                                  {{1,2,2},{1,2,2}}    {{1,2,2},{1,1,2,2}}
                                  {{1,2,3},{1,2,3}}    {{1,2,2},{1,2,2,2}}
                                  {{1,2},{1,2},{1,2}}  {{1,2,3},{1,2,3,3}}
                                  {{1,2},{1,3},{2,3}}  {{1,2},{1,2},{1,2,2}}
                                                       {{1,2},{1,3},{2,3,3}}
                                                       {{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A321407 Number of non-isomorphic multiset partitions of weight n with no constant parts.

Original entry on oeis.org

1, 0, 1, 2, 7, 13, 47, 111, 367, 1057, 3474, 11116, 38106, 131235, 470882, 1720959, 6472129, 24860957, 97779665, 392642763, 1610045000, 6732768139, 28699327441, 124600601174, 550684155992, 2476019025827, 11320106871951, 52598300581495, 248265707440448, 1189855827112636, 5787965846277749
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which every row has at least two nonzero entries.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions:
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,4,4}}
                      {{1,2},{3,4}}  {{1,2,3,4,5}}
                      {{1,3},{2,3}}  {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    S(q, t, k)={sum(j=1, #q, if(t%q[j]==0, q[j]))*vector(k,i,1)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(x*Ser(K(q, t, n\t)-S(q, t, n\t))/t, x, x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023

A320801 Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3
   0   1   3   6
   0   1   6  10  16
   0   1   6  20  30  34
   0   1   9  31  75  92  90
   0   1   9  45 126 246 272 211
   0   1  12  60 223 501 839 823 558
		

Crossrefs

Row sums are A007716. Last column is A049311.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
    G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x,y], [x^t,y^t])) + O(x*x^n))); s/n!}
    T(n)=[Vecrev(p) | p<-Vec(G(n))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 16 2024

A321615 Triangle read by rows: T(n,k) is the number of k X k integer matrices with sum of elements n, with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 6, 3, 1, 0, 1, 9, 13, 3, 1, 0, 1, 17, 38, 20, 3, 1, 0, 1, 23, 97, 82, 23, 3, 1, 0, 1, 36, 217, 311, 126, 24, 3, 1, 0, 1, 46, 453, 968, 624, 151, 24, 3, 1, 0, 1, 65, 868, 2825, 2637, 933, 162, 24, 3, 1, 0, 1, 80, 1585, 7394, 10098, 4942, 1132, 165, 24, 3, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 14 2018

Keywords

Comments

Also the number of non-isomorphic multiset partitions of weight n with k parts and k vertices, where the weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Nov 18 2018

Examples

			Triangle begins:
    1
    0  1
    0  1    1
    0  1    2    1
    0  1    6    3    1
    0  1    9   13    3    1
    0  1   17   38   20    3    1
    0  1   23   97   82   23    3    1
    0  1   36  217  311  126   24    3    1
    0  1   46  453  968  624  151   24    3    1
    0  1   65  868 2825 2637  933  162   24    3    1
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 24 2018, from PARI *)
  • PARI
    \\ See A318795 for M.
    T(n, k) = if(k==0, n==0, M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n));
    
  • PARI
    \\ See A340652 for G.
    T(n)={[Vecrev(p) | p<-Vec(1 + sum(k=1, n, y^k*(polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Column k=0 inserted by Andrew Howroyd, Jan 17 2024
Showing 1-10 of 12 results. Next