cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A343073 a(n) is the number of integers 0 < b < n such that b^^x == 1 (mod n) has a solution; ^^ denotes the tetration operation (cf. A321312).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 6, 2, 5, 1, 9, 1, 5, 1, 3, 3, 2, 1, 3, 3, 2, 2, 5, 1, 3, 1, 5, 1, 8, 1, 9, 2, 5, 1, 8, 1, 6, 3, 5, 1, 2, 1, 4, 1, 17, 2, 5, 1, 5, 2, 3, 3, 3, 1, 7, 3, 3, 1, 15, 2, 5, 1, 5, 2, 4, 1, 16, 4, 5, 3, 10, 1, 5
Offset: 2

Views

Author

Bernat Pagès Vives, Apr 04 2021

Keywords

Comments

If the same definition were used, but with b^x instead of b^^x, then a(n) would be A000010(n), the Euler Totient Function.
A019434 plays a special role for this sequence. a(A019434(n)) = (A019434(n)+1)/2, since all even numbers b satisfy the condition, and b=1 is the only odd number that satisfies it. This can be easily proved with the Fermat-Euler Theorem.
a(n) <= A000010(n), since gcd(b,n)=1 is a necessary condition. There is equality when n = 2 and n = 3. It is a conjecture that there are no more equality cases.
The sequence A239063 gives exactly the numbers n where a(n) = 1. This means that if b^^2 == 1 (mod n) has no solutions with 1 < b < n, then neither will b^^x == 1 (mod n).

Examples

			For n = 5,
Setting b = 1, x = 1 gives 1^^1 == 1 (mod 5).
Setting b = 2, x = 3 gives 2^^3 == 2^8 == 1 (mod 5).
Setting b = 3 has no solutions, since 3^^x == 2 (mod 5) for all x > 1.
Setting b = 4, x = 2 gives 4^^2 == 1 (mod 5).
Thus there are 3 possible values of b, and that is the value of a(5).
		

Crossrefs

Programs

  • Mathematica
    Tetration[a_,b_,mod_]:=
        Which[
            Mod[a,mod]==0, 0,
            b == 1,Mod[a,mod],
            b==2,PowerMod[a,a,mod],
            b==3&&a==2,Mod[16,mod],
            True,PowerMod[a,Mod[(Tetration[a,b-1,EulerPhi[mod]]-Floor[Log[2,mod]]),EulerPhi[mod]]+Floor[Log[2,mod]],mod]]
    TetraInv[n_,mod_,it_]:=
        Which[
            GCD[n,mod]!=1 ,0,
            it==LambdaRoot[mod]+1,0,
            Tetration[n,it,mod]==1,it,
            True,TetraInv[n,mod,it+1]
    ]
    LambdaRoot[n_]:=Module[{counter,it},
        counter = 0;
        it = n;
        While[it!=1,
            it = CarmichaelLambda[it];
            counter++;
        ];
        counter
    ]
    a[n_] := Module[{counter ,t},
        counter = 0;
        For[j=1,j<=n,j++,
            t =TetraInv[j,n,1];
            If[t!=0,counter++]
        ];
        counter
    ]

Formula

If n is a Fermat prime, a(n) = (n+1)/2.
If n is a power of 2, a(n) = 1.

A004231 Ackermann's sequence: n^^n := n^n^n^...^n (with n n's).

Original entry on oeis.org

1, 1, 4, 7625597484987
Offset: 0

Views

Author

Daniel Wild (wild(AT)edumath.u-strasbg.fr)

Keywords

Comments

Using Knuth's arrow notation, this is n^^^2 (n-penta-2) or n^^n (n-tetra-n). - Andrew Robbins, Apr 16 2009
Comment from Trevor Green: The fourth term in this sequence has about as many digits - 8.07 * 10^153 - as the *square* of the number of protons in the universe.
We could prepend a(0) = 1 (since 0^^0 = 1, that is, the "empty power tower" gives the "empty product"). - Daniel Forgues, May 17 2013
The last 60 decimal digits of a(4) are ...67586985427238232605843019607448189676936860456095261392896. - Daniel Forgues, Jun 25 2016
From Daniel Forgues, Jul 06 2016: (Start)
a(4) has (the following number having 154 decimal digits)
80723047260282253793826303970853990300713679217387 \
43031867082828418414481568309149198911814701229483 \
451981557574771156496457238535299087481244990261351117 decimal digits.
a(4) = 4^4^4^4 = 4^
13407807929942597099574024998205846127479365820592 \
39337772356144372176403007354697680187429816690342 \
7690031858186486050853753882811946569946433649006084096,
the exponent of 4 having 155 decimal digits. (End)
The fractional part of 4^4^4*log[10](4) starts .373100157363599870..., so the first few digits of a(4) are 23610226714597313.... - Robert Israel, Jul 06 2016

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 60.

Crossrefs

Cf. A027747, A008868 (which mentions an older estimate for the same number), A266200.
Main diagonal of A321312.

Programs

  • Maple
    b:= (n, i)-> `if`(i=0, 1, n^b(n, i-1)):
    a:= n-> b(n, n):
    seq(a(n), n=0..3);  # Alois P. Heinz, Aug 22 2017
  • Mathematica
    a[n_] := If[n == 0, 1, Nest[n^#&, n, n-1]];
    Table[a[n], {n, 0, 3}] (* Jean-François Alcover, Mar 19 2019 *)

A171882 Square array, read by antidiagonals, where T(n,k)=n^^k for n>=0, k>=0.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 4, 1, 1, 1, 4, 27, 16, 1, 0, 1, 5, 256, 7625597484987, 65536, 1, 1, 1, 6, 3125, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096
Offset: 0

Views

Author

Robert Munafo, Jan 21 2010

Keywords

Comments

n^^k defined the right-associative way: n^^2=n^n, n^^3=n^(n^n), n^^4=n^(n^(n^n)), etc.
n^^0=1 by convention, so that n^^(k+1) = n^(n^^k) for all k>=0.
More terms on Munafo website.

Examples

			Array begins:
1,0,1,0,1,0,1,...
1,1,1,1,1,1,1,...
1,2,4,16,65536,...
1,3,27,7625597484987,...
1,4,256,...
1,5,3125,...
1,6,46656,...
		

Crossrefs

Cf. A171881, A321312 (by downwards diagonals).
Rows n=0 to 4: A059841, A000012, A014221, A014222, A114561.
Columns k=0 to 3: A000012, A001477, A000312, A002488.
Main diagonal A004231 (Ackermann's sequence).

A364270 a(n) = 2^^n + 3^^n, where ^^ indicates tetration.

Original entry on oeis.org

2, 5, 31, 7625597485003
Offset: 0

Views

Author

Marco Ripà, Oct 20 2023

Keywords

Comments

a(4) has 3638334640025 digits and is too large to show here.
a(n) is prime for n = 0, 1, 2, 3, but it is not known if a(4) is prime.

Examples

			For n = 3, a(3) = 2^2^2 + 3^3^3 = 2^4 + 3^27 = 7625597485003.
		

Crossrefs

Programs

  • Mathematica
    nmax=3; NestList[2^#&, 1,nmax]+NestList[3^#&,1,nmax] (* Stefano Spezia, Oct 22 2023 *)

Formula

a(n) = A014221(n) + A014222(n+1).
a(n) = A321312(2,n) + A321312(3,n).
Showing 1-4 of 4 results.