cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A317824 a(n) = A000422(n)^^A000422(n) (mod 10^len(A000422(n))), where ^^ indicates tetration or hyper-4 (e.g., 3^^4 = 3^(3^(3^3))).

Original entry on oeis.org

1, 21, 721, 8721, 8721, 708721, 5708721, 65708721, 165708721, 65165708721, 1165165708721, 861165165708721, 5861165165708721, 5005861165165708721, 55005861165165708721, 48055005861165165708721, 8448055005861165165708721, 388448055005861165165708721, 49388448055005861165165708721
Offset: 1

Views

Author

Marco Ripà, Aug 10 2018

Keywords

Comments

For any n, a(n) (mod 10^len(A000422(n))) == a(n + 1) (mod 10^len(A000422(n))), where len(k) := number of digits in k. Assuming len(a(n))>1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A061839 or A014925), as shown in Ripà's book "La strana coda della serie n^n^...^n".

Examples

			For n = 3, a(3) = 321^^321 (mod 10^3) = 721. In fact, a(3) (mod 10^3) == a(4) (mod 10^3), since 721 (mod 10^3) == 8721 (mod 10^3).
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6

Crossrefs

Cf. A000422, A058183, A171882 (tetration), A317903.

Programs

  • PARI
    tmod(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^tmod(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + tmod(b, eulerphi(n))));}
    f(n) = my(t=n); forstep(k=n-1, 1, -1, t=t*10^#Str(k)+k); t; \\ A000422
    a(n) = my(x=f(n)); tmod(x, 10^#Str(x)); \\ Michel Marcus, Sep 12 2021

Formula

a(n) = (n_n-1_n-2_...2_1)^^(n_n-1_n-2...2_1) (mod 10^len(n_n-1_n-2..._2_1)), where len(k) := number of digits in k.

Extensions

More terms from Jinyuan Wang, Aug 30 2020

A317903 a(n) = A038394(n)^^A038394(n) (mod 10^len(A038394(n))), where ^^ indicates tetration or hyper-4 (e.g., 3^^4=3^(3^(3^3))).

Original entry on oeis.org

4, 76, 176, 4176, 314176, 91314176, 891314176, 80891314176, 88080891314176, 5288080891314176, 705288080891314176, 10705288080891314176, 2410705288080891314176, 912410705288080891314176, 42912410705288080891314176, 9242912410705288080891314176, 989242912410705288080891314176
Offset: 1

Views

Author

Marco Ripà, Aug 10 2018

Keywords

Comments

For any n >= 2, a(n) (mod 10^len(A038394(n))) == a(n + 1) (mod 10^len(A038394(n))), where len(k) := number of digits in k. Assuming len(a(n))>1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A014925 or A092447), as shown in Ripà's book "La strana coda della serie n^n^...^n".

Examples

			For n = 6, a(6) = 13117532^^13117532 (mod 10^8) == 91314176.
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6

Crossrefs

Cf. A038394, A068670, A171882 (tetration), A317824.

Programs

  • PARI
    tmod(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^tmod(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + tmod(b, eulerphi(n))));}
    f(n) = fromdigits(concat([digits(p) | p<-Vecrev(primes(n))])); \\ A038394
    a(n) = if (n==1, 4, my(x=f(n)); tmod(x, 10^#Str(x))); \\ Michel Marcus, Sep 12 2021

Formula

a(n) = (p(n)p(n-1)_p(n-2)...3_2)^^(p(n)_p(n-1)_p(n-2)...3_2) (mod 10^len(p(n)_p(n-1)_p(n-2)..._3_2)), where len(k) := number of digits in k.

Extensions

More terms from Jinyuan Wang, Aug 30 2020

A321312 A(n,k) = n^^k is the k-th tetration of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 4, 3, 1, 0, 1, 16, 27, 4, 1, 1, 1, 65536, 7625597484987, 256, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2018

Keywords

Examples

			Square array A(n,k) begins:
  1, 0,      1,              0,      1,   0,   1, ...
  1, 1,      1,              1,      1,   1,   1, ...
  1, 2,      4,             16,  65536, ...
  1, 3,     27,  7625597484987,    ...
  1, 4,    256,            ...
  1, 5,   3125,            ...
  1, 6,  46656,            ...
  1, 7, 823543,            ...
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A001477, A000312, A002488.
Rows n=0-4 give: A059841, A000012, A014221, A014222(k+1), A114561(k+1).
Main diagonal gives A004231 (Ackermann's sequence).
Cf. A027747, A171882 (by upwards diagonals).

Programs

  • Maple
    A:= (n, k)-> `if`(k=0, 1, n^A(n, k-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..6);

A171881 Square array, read by antidiagonals, where T(n,k)=n^^k for n>=0, k>=1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 27, 16, 1, 1, 5, 256, 19683, 256, 1, 1, 6, 3125, 4294967296, 7625597484987, 65536, 1, 1, 7, 46656, 298023223876953125, 340282366920938463463374607431768211456
Offset: 0

Views

Author

Robert Munafo, Jan 21 2010

Keywords

Comments

n^^k is defined the left-associative way: n^^2=n^n, n^^3=(n^n)^n=n^(n^2), n^^4=((n^n)^n)^n=n^(n^3), and in general n^^k=n^(n^(k-1)).
More terms on Munafo website.

Examples

			Array begins:
  0,1,1,1,1,1,...
  1,1,1,1,1,1,...
  2,4,16,256,65536,...
  3,27,19683,...
  4,256,4294967296,...
  5,3125,...
  6,46656,...
		

Crossrefs

Cf. A171882.

Programs

  • Mathematica
    T[n_, k_] := If[n == 0, Boole[k != 0], n^(n^k)]; Table[T[k, n - k], {n, 0, 7}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Oct 29 2021 *)

A373495 a(1) = 2; thereafter, a(n) = prime(n)^prime(n-1) (mod 10).

Original entry on oeis.org

2, 9, 5, 7, 1, 7, 7, 9, 7, 9, 1, 3, 1, 3, 3, 7, 9, 1, 7, 1, 7, 9, 7, 9, 7, 1, 3, 3, 9, 3, 7, 1, 3, 9, 9, 1, 3, 3, 3, 7, 9, 1, 1, 7, 7, 9, 1, 7, 3, 9, 3, 9, 1, 1, 3, 3, 9, 1, 3, 1, 3, 7, 7, 1, 7, 7, 1, 3, 7, 9, 3, 9, 3, 7, 9, 7, 9, 7, 1, 9, 9, 1, 1, 7, 9, 7, 9, 7, 1, 3, 3, 9, 3, 1, 9, 7, 9, 1, 3, 1, 7, 3, 3, 9, 1
Offset: 1

Views

Author

Robert G. Wilson v, Jun 06 2024

Keywords

Comments

This sequence is not periodic.

Examples

			a(2) = 3^2 (mod 10) = 9.
a(3) = 5^3 (mod 10) = 5.
		

References

  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing, Redwood City, CA, 1991, p. 226-229.

Crossrefs

Programs

  • Mathematica
    a[n_] := Switch[ Mod[ Prime[n], 10], 1, 1, 3, If[ Mod[ Prime[n -1], 4] == 1, 3, 7], 5, 5, 7, If[ Mod[ Prime[n -1], 4] == 1, 7, 3], 9, 9]; a[1] = 2; a[2] = 9; Array[a, 105]
    Join[{2}, Map[PowerMod[#[[2]], #[[1]], 10] &, Partition[Prime[Range[100]], 2, 1]]] (* Paolo Xausa, Jul 14 2025 *)
  • PARI
    a(n) = if(n<2, 2, lift(Mod(prime(n),10)^prime(n-1))) \\ Hugo Pfoertner, Jul 07 2024

Formula

a(n) = A078422(n-1) mod 10. - R. J. Mathar, Jul 14 2025

A371720 a(n) = m^^m mod 10^len(m), where m = A038399(n) and ^^ indicates tetration or hyper-4.

Original entry on oeis.org

1, 11, 811, 3811, 63811, 763811, 3763811, 5103763811, 515103763811, 19515103763811, 6819515103763811, 8146819515103763811, 3808146819515103763811, 7213808146819515103763811, 9807213808146819515103763811, 4939807213808146819515103763811
Offset: 1

Views

Author

Marco Ripà, Apr 04 2024

Keywords

Comments

For any n, a(n) == a(n + 1) (mod 10^len(A038399(n))), where len(k) := number of digits in k. Assuming len(a(n)) > 1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A014925, A061839, A092845, and A104759), as shown in Ripà's book "La strana coda della serie n^n^...^n".
Moreover, assuming n > 1, since A038399(n) is congruent to 11 (mod 20), the convergence speed of A038399(n)^^b (say, V(A038399(n), b) = {2, 1, 1, 1, ...}) is 2 at height 1 and becomes a unit value for any integer b > 1 (see Links). Hence, a(n) is given by A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))), and also by A038399(n)^^len(A038399(n)) (mod 10^len(A038399(n))) since A038399(n)^^len(A038399(n)) == A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))) holds for any n.

Examples

			a(8) is given by the rightmost 10 digits of 2113853211^^2113853211 and thus a(8) = 5103763811.
a(9) == a(8) (mod 10^10), i.e., the digits of a(9) end with the digits of a(8) (and then a(9) has 2 more preceding).
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6

Crossrefs

Cf. A000045 (Fibonacci), A038399, A171882 (tetration), A317824, A317903, A317905.

Formula

a(n) = A038399(n)^^(len(A038399(n)) - 1) mod 10^len(A038399(n)), where len(A038399(n)) = ceiling(log_10(A038399(n) + 1)).
Showing 1-6 of 6 results.