cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321348 a(n) = Sum_{d|n} tau(d^n), where tau() is the number of divisors (A000005).

Original entry on oeis.org

1, 4, 5, 15, 7, 64, 9, 52, 30, 144, 13, 546, 15, 256, 289, 165, 19, 1140, 21, 1386, 529, 576, 25, 3848, 78, 784, 166, 2610, 31, 32768, 33, 486, 1225, 1296, 1369, 12321, 39, 1600, 1681, 10248, 43, 85184, 45, 6210, 6486, 2304, 49, 24250, 150, 7956
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 06 2018

Keywords

Comments

a(n) is prime iff n is in A001359, which makes the sequence a supersequence of A006512. - Ivan N. Ianakiev, Nov 07 2018

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(d^n): d in Divisors(n)]: n in [1..50]]; // Vincenzo Librandi, Nov 08 2018
    
  • Maple
    with(numtheory): seq(coeff(series(add(tau(k^n)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
  • Mathematica
    Table[Sum[DivisorSigma[0, d^n], {d, Divisors[n]}], {n, 50}]
    a[n_] := Times @@ ((#[[2]] + 1) (n #[[2]] + 2)/2 & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 50}]
  • PARI
    a(n) = sumdiv(n, d, numdiv(d^n)); \\ Michel Marcus, Nov 06 2018
    
  • Python
    from math import prod
    from sympy import factorint
    def A321348(n): return prod((e+1)*(n*e+2)>>1 for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022

Formula

a(n) = [x^n] Sum_{k>=1} tau(k^n)*x^k/(1 - x^k).
If n = Product (p_j^k_j) then a(n) = Product ((k_j + 1)*(n*k_j + 2)/2).
a(prime(n)) = prime(n) + 2 = A052147(n). - Michel Marcus, Nov 25 2018