A321348 a(n) = Sum_{d|n} tau(d^n), where tau() is the number of divisors (A000005).
1, 4, 5, 15, 7, 64, 9, 52, 30, 144, 13, 546, 15, 256, 289, 165, 19, 1140, 21, 1386, 529, 576, 25, 3848, 78, 784, 166, 2610, 31, 32768, 33, 486, 1225, 1296, 1369, 12321, 39, 1600, 1681, 10248, 43, 85184, 45, 6210, 6486, 2304, 49, 24250, 150, 7956
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Programs
-
Magma
[&+[NumberOfDivisors(d^n): d in Divisors(n)]: n in [1..50]]; // Vincenzo Librandi, Nov 08 2018
-
Maple
with(numtheory): seq(coeff(series(add(tau(k^n)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
-
Mathematica
Table[Sum[DivisorSigma[0, d^n], {d, Divisors[n]}], {n, 50}] a[n_] := Times @@ ((#[[2]] + 1) (n #[[2]] + 2)/2 & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 50}]
-
PARI
a(n) = sumdiv(n, d, numdiv(d^n)); \\ Michel Marcus, Nov 06 2018
-
Python
from math import prod from sympy import factorint def A321348(n): return prod((e+1)*(n*e+2)>>1 for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022
Formula
a(n) = [x^n] Sum_{k>=1} tau(k^n)*x^k/(1 - x^k).
If n = Product (p_j^k_j) then a(n) = Product ((k_j + 1)*(n*k_j + 2)/2).
a(prime(n)) = prime(n) + 2 = A052147(n). - Michel Marcus, Nov 25 2018
Comments