cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A277203 Number of distinct chromatic symmetric functions realizable by a graph on n vertices.

Original entry on oeis.org

1, 2, 4, 11, 33, 146, 939, 10932
Offset: 1

Views

Author

Sam Heil and Caleb Ji, Oct 04 2016

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895). - Gus Wiseman, Nov 21 2018

Examples

			For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}.
From _Gus Wiseman_, Nov 21 2018: (Start)
The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis):
                                     m(1111)
                            m(211) + m(1111)
                           2m(211) + m(1111)
          m(22) +          2m(211) + m(1111)
                           3m(211) + m(1111)
          m(22) +          3m(211) + m(1111)
                   m(31) + 3m(211) + m(1111)
         2m(22) +          4m(211) + m(1111)
          m(22) +  m(31) + 4m(211) + m(1111)
         2m(22) + 2m(31) + 5m(211) + m(1111)
  m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111)
(End)
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    Table[Length[Union[chromSF/@simpleSpans[n]]],{n,6}] (* Gus Wiseman, Nov 21 2018 *)

A321911 Number of distinct chromatic symmetric functions of simple connected graphs with n vertices.

Original entry on oeis.org

1, 1, 2, 6, 20, 103, 759
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions p of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).

Examples

			The a(4) = 6 connected chromatic symmetric functions (m is the augmented monomial symmetric function basis):
                    m(1111)
           m(211) + m(1111)
          2m(211) + m(1111)
  m(22) + 2m(211) + m(1111)
  m(22) + 3m(211) + m(1111)
  m(31) + 3m(211) + m(1111)
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromSF/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,6}]

A321750 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in p(u), where H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 3, 6, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Triangle begins:
   1
   1
   1   0
   1   2
   1   0   0
   1   1   0
   1   0   0   0   0
   1   3   6
   1   2   0   0   0
   1   0   1   0   0
   1   0   0   0   0   0   0
   1   2   2   2   0
   1   0   0   0   0   0   0   0   0   0   0
   1   1   0   0   0   0   0
   1   0   1   0   0   0   0
   1   6   4  12  24
   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   1   1   2   2   0   0   0
For example, row 18 gives: p(221) = m(5) + 2m(32) + m(41) + 2m(221).
		

Crossrefs

A321889 Sum of coefficients of forgotten symmetric functions in the power sum symmetric function of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, -1, 3, 1, -2, -1, 10, 3, 2, 1, -7, -1, -2, -2, 47, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sum of coefficients of p(211) = -f(4) - 2f(22) - 2f(31) - 2f(211) is a(12) = -7.
		

Crossrefs

Showing 1-4 of 4 results.