A277203 Number of distinct chromatic symmetric functions realizable by a graph on n vertices.
1, 2, 4, 11, 33, 146, 939, 10932
Offset: 1
Examples
For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}. From _Gus Wiseman_, Nov 21 2018: (Start) The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis): m(1111) m(211) + m(1111) 2m(211) + m(1111) m(22) + 2m(211) + m(1111) 3m(211) + m(1111) m(22) + 3m(211) + m(1111) m(31) + 3m(211) + m(1111) 2m(22) + 4m(211) + m(1111) m(22) + m(31) + 4m(211) + m(1111) 2m(22) + 2m(31) + 5m(211) + m(1111) m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111) (End)
Links
- Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194.
- Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286.
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]; simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]]; Table[Length[Union[chromSF/@simpleSpans[n]]],{n,6}] (* Gus Wiseman, Nov 21 2018 *)
Comments