cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322171 Expansion of x*(3 + 5*x + x^2 + x^3)/((1 - x)^2*(1 + x^2)).

Original entry on oeis.org

3, 11, 17, 19, 23, 31, 37, 39, 43, 51, 57, 59, 63, 71, 77, 79, 83, 91, 97, 99, 103, 111, 117, 119, 123, 131, 137, 139, 143, 151, 157, 159, 163, 171, 177, 179, 183, 191, 197, 199, 203, 211, 217, 219, 223, 231, 237, 239, 243, 251, 257, 259, 263, 271, 277, 279, 283, 291, 297, 299
Offset: 1

Views

Author

Mark A. Thomas, Nov 29 2018

Keywords

Crossrefs

Cf. A228826.

Programs

  • Magma
    I:=[3,11,17,19]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Dec 06 2018
  • Maple
    seq(coeff(series(x*(x^3+x^2+5*x+3)/((1-x)^2*(1+x^2)),x,n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    CoefficientList[Series[(x^3 + x^2 + 5 x + 3)/((x - 1)^2 (x^2 + 1)), {x, 0, 50}], x] (* or *)
    a[n_]:= (1/2) (10 n - (1 + 2 * I) (-I)^n - (1 - 2 I) I^n); Simplify[Array[a, 50]] (* Stefano Spezia, Nov 29 2018 *)
    LinearRecurrence[{2, -2, 2, -1}, {3, 11, 17, 19}, 60] (* Vincenzo Librandi, Dec 06 2018 *)
  • PARI
    Vec((3 + 5*x + x^2 + x^3)/((1 - x)^2*(1 + x^2)) + O(x^60)) \\ Andrew Howroyd, Nov 29 2018
    

Formula

a(n) = (1/2)*(10*n - (1+2*i)*(-i)^n - (1-2*i)*i^n), where i = sqrt(-1).
a(n) = 5*n - 2*sin(Pi*n/2) - cos(Pi*n/2).
a(n) = 5*n - A228826(n-1). - Andrew Howroyd, Nov 29 2018
G.f.: x*(x^3 + x^2 + 5*x + 3) / ((x - 1)^2 *(x^2 + 1)). - Vincenzo Librandi, Dec 06 2018