cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A323092 Number of double-free integer partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 17, 24, 30, 40, 50, 66, 81, 104, 128, 161, 197, 246, 300, 369, 446, 546, 656, 796, 952, 1148, 1366, 1637, 1940, 2311, 2730, 3234, 3806, 4489, 5262, 6181, 7225, 8454, 9846, 11484, 13335, 15499, 17948, 20796, 24017, 27751, 31970, 36837
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Comments

An integer partition is double-free if no part is twice any other part.

Examples

			The a(1) = 1 through a(8) = 14 double-free integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (431)
                                               (4111)     (611)
                                               (31111)    (2222)
                                               (1111111)  (3311)
                                                          (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,2*#]=={}&]],{n,30}]

A120641 Number of partitions of n into distinct double-free parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 5, 7, 8, 10, 12, 14, 17, 20, 24, 26, 31, 38, 45, 50, 57, 68, 77, 88, 101, 116, 132, 151, 170, 194, 222, 247, 281, 318, 356, 399, 452, 509, 567, 635, 709, 794, 885, 983, 1094, 1222, 1358, 1504, 1671, 1854, 2050, 2264, 2505, 2771, 3060, 3370
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 17 2006

Keywords

Examples

			a(10) = #{10, 9+1, 8+2, 7+3, 6+4, 5+4+1, 5+3+2} = 7;
a(11) = #{11, 10+1, 9+2, 8+3, 7+4, 7+3+1, 6+5, 6+4+1} = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,2*#]=={}&]],{n,30}] (* Gus Wiseman, Jan 07 2019 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 16 2019

A350844 Number of strict integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 4, 4, 7, 7, 8, 11, 12, 15, 18, 21, 23, 31, 32, 40, 45, 54, 59, 73, 78, 94, 106, 122, 136, 161, 177, 203, 231, 259, 293, 334, 372, 417, 476, 525, 592, 663, 742, 821, 931, 1020, 1147, 1271, 1416, 1558, 1752, 1916, 2137, 2357, 2613, 2867
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4   5    6     7    8     9     A      B     C
          21       32   51    43   62    54    73     65    84
                   41   321   52   71    63    82     74    93
                              61   521   72    91     83    A2
                                         81    541    92    B1
                                         432   721    A1    543
                                         621   4321   632   651
                                                      821   732
                                                            741
                                                            921
                                                            6321
		

Crossrefs

The version for no difference 0 is A000009.
The version for no difference > -2 is A001227, non-strict A034296.
The version for no difference -1 is A003114 (A325160).
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The opposite version is A072670.
The multiplicative version is A350840, non-strict A350837 (A350838).
The non-strict version is A350842.
A000041 counts integer partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length (A026424).
A116931 counts partitions with no difference -1 (A319630).
A323092 counts double-free integer partitions (A320340) strict A120641.
A325534 counts separable partitions (A335433).
A325535 counts inseparable partitions (A335448).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],0|-2]&]],{n,0,30}]

A323093 Number of integer partitions of n where no part is 2^k times any other part, for any k > 0.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 9, 12, 13, 18, 23, 29, 37, 49, 55, 71, 84, 104, 126, 153, 185, 221, 261, 317, 375, 446, 523, 623, 721, 854, 994, 1168, 1357, 1579, 1833, 2126, 2455, 2843, 3270, 3766, 4320, 4980, 5687, 6521, 7444, 8498, 9684, 11039, 12540, 14262
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(1) = 1 through a(8) = 12 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (311)    (51)      (52)       (53)
                    (1111)  (11111)  (222)     (61)       (62)
                                     (3111)    (322)      (71)
                                     (111111)  (331)      (332)
                                               (511)      (611)
                                               (31111)    (2222)
                                               (1111111)  (3311)
                                                          (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],stableQ[#,IntegerQ[Log[2,#1/#2]]&]&]],{n,30}]

A350837 Number of integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 18, 24, 31, 41, 53, 70, 87, 112, 140, 178, 221, 277, 344, 428, 526, 648, 792, 971, 1180, 1436, 1738, 2103, 2533, 3049, 3660, 4387, 5242, 6259, 7450, 8860, 10511, 12453, 14723, 17387, 20489, 24121, 28343, 33269, 38982, 45632, 53327
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

The first of these partitions that is not double-free (see A323092 for definition) is (4,3,2).

Examples

			The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (32)     (33)      (43)
                    (31)    (41)     (51)      (52)
                    (1111)  (311)    (222)     (61)
                            (11111)  (411)     (322)
                                     (3111)    (331)
                                     (111111)  (511)
                                               (4111)
                                               (31111)
                                               (1111111)
		

Crossrefs

The version with quotients >= 2 is A000929, sets A018819.
<= 2 is A342094, ranked by A342191.
< 2 is A342096, sets A045690, strict A342097.
> 2 is A342098, sets A040039.
The sets version (subsets of prescribed maximum) is A045691.
These partitions are ranked by A350838.
The strict case is A350840.
A version for differences is A350842, strict A350844.
The complement is counted by A350846, ranked by A350845.
A000041 = integer partitions.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Divide@@@Partition[#,2,1],2]&]],{n,0,15}]

A350840 Number of strict integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
  1   2   3   4    5    6    7    8     9     A     B     C     D
              31   32   51   43   53    54    64    65    75    76
                   41        52   62    72    73    74    93    85
                             61   71    81    82    83    A2    94
                                  431   432   91    92    B1    A3
                                        531   532   A1    543   B2
                                              541   641   651   C1
                                                    731   732   643
                                                          741   652
                                                          831   751
                                                                832
                                                                931
                                                                5431
		

Crossrefs

The version for subsets of prescribed maximum is A045691.
The double-free case is A120641.
The non-strict case is A350837, ranked by A350838.
An additive version (differences) is A350844, non-strict A350842.
The non-strict complement is counted by A350846, ranked by A350845.
Versions for prescribed quotients:
= 2: A154402, sets A001511.
!= 2: A350840 (this sequence), sets A045691.
>= 2: A000929, sets A018819.
<= 2: A342095, non-strict A342094.
< 2: A342097, non-strict A342096, sets A045690.
> 2: A342098, sets A040039.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]

A319613 a(n) = prime(n) * prime(2n).

Original entry on oeis.org

6, 21, 65, 133, 319, 481, 731, 1007, 1403, 2059, 2449, 3293, 4141, 4601, 5311, 6943, 8201, 9211, 10921, 12283, 13213, 15247, 16517, 19847, 22213, 24139, 25853, 28141, 29539, 31753, 37211, 40741, 43429, 46843, 52001, 54209, 58561, 62429, 66299, 70757, 75359
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (p-> p(n)*p(2*n))(ithprime):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jan 08 2019
  • Mathematica
    Table[Prime[n]*Prime[2*n],{n,50}]
  • PARI
    a(n) = prime(n)*prime(2*n) \\ Felix Fröhlich, Jan 09 2019
Showing 1-7 of 7 results.