cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006455 Number of partial orders on {1,2,...,n} that are contained in the usual linear order (i.e., xRy => x

Original entry on oeis.org

1, 1, 2, 7, 40, 357, 4824, 96428, 2800472, 116473461, 6855780268, 565505147444, 64824245807684
Offset: 0

Views

Author

Keywords

Comments

Also known as naturally labeled posets. - David Bevan, Nov 16 2023
Also the number of n X n upper triangular Boolean matrices B with all diagonal entries 1 such that B = B^2.
The asymptotic values derived by Brightwell et al. are relevant only for extremely large values of n. The average number of linear extensions (topological sorts) of a random partial order on {1,...,n} is n! S_n / N_n, where S_n is this sequence and N_n is sequence A001035

Examples

			a(3) = 7: {}, {1R2}, {1R3}, {2R3}, {1R2, 1R3}, {1R3, 2R3}, {1R2, 1R3, 2R3}.
		

References

  • N. B. Hindman, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

E.g.f.: exp(S(x)-1) where S(x)is the e.g.f. for A323502. - Ludovic Schwob, Mar 29 2024

Extensions

Additional comments and more terms from Don Knuth, Dec 03 2001

A323842 Number of n-node Stanley graphs without isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 11, 72, 677, 8686, 152191, 3632916, 118317913, 5271781946, 322549557299, 27208234437984, 3177021912874253, 515436469519284358, 116581257420399219175, 36866447823471507563436, 16339685138335030408029889, 10170100145132835334268145362
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2019

Keywords

Comments

For precise definition see Knuth (1997).
Also, the number of naturally labeled posets on [n] with height at most two and no isolated elements. - David Bevan, Nov 17 2023

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    g:= proc(n) option remember;
          add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    a:= proc(n) option remember;
          add(g(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    b[n_] := b[n] = Sum[Product[(2^(i+k) - 1)/(2^i - 1), {i, n-k}], {k, 0, n}];
    g[n_] := g[n] = Sum[b[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a[n_] := a[n] = Sum[g[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a /@ Range[0, 21] (* Jean-François Alcover, May 24 2020, after Alois P. Heinz *)
  • Maxima
    P(n, k, x):=if k<0 or n<0 then 0 else if k=0 then 1 else x*P(n, k-1, x)+
    2^k*P(n-1, k, (x+1)/2);
    a(n):=sum(P(n-k, k, -1), k, 0, n);
    makelist(a(n), n, 0, 10);
    /* Vladimir Kruchinin, Mar 08 2020 */

Formula

a(n) = Sum_{j=0..n} (-1)^j * C(n,j) * A135922(n-j). - Alois P. Heinz, Sep 24 2019
a(n) = Sum_{k=0..n} P(n-k, k, -1), where P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2). - Vladimir Kruchinin, Mar 09 2020
G.f.: g(1,0), where g(u,v) = 1 + x*((v-1)*g(u,v) + g(2*u,u+v)). - David Bevan, Jul 28 2022
G.f.: 1/(1+z) * Sum_{k>=0} (z^k / Prod_{i=2..k} (1 - (2^i-2)*z)). - David Bevan, Nov 17 2023; simplified on Jul 25 2024

Extensions

More terms from Alois P. Heinz, Sep 24 2019

A323658 Number of bipartite graphs associated with connected transitive oriented graphs.

Original entry on oeis.org

1, 1, 1, 2, 7, 25, 133, 854
Offset: 0

Views

Author

M. Farrokhi D. G., Jan 23 2019

Keywords

Comments

Also the number of unlabeled connected Cohen-Macaulay bipartite graphs up to graph isomorphism.
If G is an oriented graph with vertex set {1,...,n}, then the associated bipartite graph is a bipartite graph B(G) with parts {a1,...,an} and {b1,...,bn} such that ai ~ bj if (i,j) is an edge in G.

Examples

			Example: For n = 4 the a(4) = 7 solutions are given by the edge sets
E1 = {(1,5), (1,7), (2,6), (2,7), (2,8), (3,7), (4,8)},
E2 = {(1,5), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)},
E3 = {(1,5), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)},
E4 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (4,8)},
E5 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)},
E6 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)},
E7 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}.
		

Crossrefs

Showing 1-3 of 3 results.