cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A324342 If 2n = 2^e1 + ... + 2^ek [e1 .. ek distinct], then a(n) is the minimal number of primorials (A002110) that add to A002110(e1) * ... * A002110(ek).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 6, 1, 2, 6, 2, 10, 10, 8, 16, 1, 2, 6, 12, 6, 12, 24, 20, 18, 20, 28, 28, 26, 6, 18, 24, 1, 2, 6, 12, 14, 12, 20, 6, 18, 18, 22, 26, 38, 20, 16, 16, 24, 32, 42, 44, 34, 50, 68, 70, 36, 54, 60, 54, 70, 56, 60, 82, 1, 2, 6, 12, 12, 6, 18, 36, 12, 24, 28, 34, 34, 50, 50, 72, 22, 26, 28, 34, 38, 54, 40, 52, 28, 38, 56
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2019

Keywords

Comments

When A283477(n) is written in primorial base (A049345), then a(n) is the sum of digits (with unlimited digit values), thus also the minimal number of primorials (A002110) that add to A283477(n).
Number of prime factors in A324289(n), counted with multiplicity.
Each subsequence starting at each n = 2^k is converging towards A283477: 1, 2, 6, 12, 30, 60, 180, 360, 210, 420, etc. See also comments in A324289.

Crossrefs

Programs

Formula

a(n) = A276150(A283477(n)).
a(n) >= A324341(n).
a(2^n) = 1 for all n >= 0.

A324289 a(n) = A276086(A283477(n)).

Original entry on oeis.org

2, 3, 5, 25, 7, 49, 117649, 184877, 11, 121, 1771561, 143, 36226650889, 59797108943, 546826709, 299019449675770681, 13, 169, 4826809, 23298085122481, 8254129, 68130645548641, 17750592470222918406076697669, 406193515012381653451063, 8223741426987700773289, 1553319630709265128413587, 1977089672816762887718980502697827
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2019

Keywords

Comments

All primes are present, and furthermore, each subsequence starting at each n = 2^k is converging towards p^A283477(0), p^A283477(1), p^A283477(2), p^A283477(3), ..., where p = A000040(2+k). For example, for a(2^4) = a(16), the prime is A000040(2+4) = 13, and its powers 13^1, 13^2, 13^6 and 13^12 occur in successive positions from a(16) to a(19). See also comments in A324342.

Crossrefs

Programs

Formula

a(n) = A276086(A283477(n)).
For n >= 0, a(2^n) = A000040(2+n).
A001221(a(n)) = A324341(n).
A001222(a(n)) = A324342(n).

A342461 Number of nonzero digits when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 2, 5, 4, 3, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3, 2, 4, 3, 4, 3, 4, 3, 4, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 4
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A001221(A342456(n)) = A001221(A342457(n)).
a(n) = A267263(A329886(n)) = A329040(A005940(1+n)).
a(n) <= A342462(n).
For n >= 0, a(2^n) = 1.

A324381 Number of nonzero digits when the n-th highly composite number is written in primorial base: a(n) = A267263(A002182(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Feb 26 2019

Keywords

Examples

			For n=12, A002182(12) = 240, which is written as "11000" in primorial base (A049345) because 240 = 1*A002110(4) + 1*A002110(3) = 210+30, thus a(12) = 2, as there are two nonzero digits.
For n=18, A002182(18) = 2520 = "110000" in primorial base because 2520 = 1*A002110(5) + 1*A002110(4) = 2310+210, thus a(18) = 2.
For n=26, A002182(26) = 45360 = "1670000" in primorial base because 45360 = 1*A002110(6) + 6*A002110(5) + 7*A002110(4), thus a(26) = 3, as there are three nonzero digits.
		

Crossrefs

Programs

Formula

a(n) = A267263(A002182(n)).
a(n) <= A324382(n).
Showing 1-5 of 5 results.