cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060280 Number of orbits of length n under the map whose periodic points are counted by A001350.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078, 22542396
Offset: 1

Views

Author

Thomas Ward, Mar 29 2001

Keywords

Comments

Euler transform is A000045. 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)^2*(1-x^6)^2*...) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + ... - Michael Somos, Jan 28 2003

Examples

			a(7)=4 since the 7th term of A001350 is 29 and the 1st is 1, so there are (29-1)/7 = 4 orbits of length 7.
x + x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 5*x^8 + 8*x^9 + 11*x^10 + 18*x^11 + ...
		

Crossrefs

First column of A348422.

Programs

  • Magma
    A060280:= func< n | n le 2 select 2-n else (&+[Lucas(d)*MoebiusMu(Floor(n/d)) : d in Divisors(n)])/n >;
    [A060280(n): n in [1..50]]; // G. C. Greubel, Nov 06 2024
    
  • Maple
    A060280 := proc(n)
        add( numtheory[mobius](d)*A001350(n/d), d=numtheory[divisors](n)) ;
        %/n;
    end proc: # R. J. Mathar, Jul 15 2016
  • Mathematica
    A001350[n_] := LucasL[n] - (-1)^n - 1;
    a[n_] := (1/n)*DivisorSum[n, MoebiusMu[#]*A001350[n/#]& ];
    Array[a, 50] (* Jean-François Alcover, Nov 23 2017 *)
  • PARI
    {a(n) = if( n<3, n==1, sumdiv( n, d, moebius(n/d) * (fibonacci(d - 1) + fibonacci(d + 1))) / n)} /* Michael Somos, Jan 28 2003 */
    
  • SageMath
    A000032=BinaryRecurrenceSequence(1,1,2,1)
    def A060280(n): return sum(A000032(k)*moebius(n/k) for k in (1..n) if (k).divides(n))//n - int(n==2)
    [A060280(n) for n in range(1,41)] # G. C. Greubel, Nov 06 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001350(n/d).
a(n) = A006206(n) except for n=2. - Michael Somos, Jan 28 2003
a(n) = A031367(n)/n. - R. J. Mathar, Jul 15 2016
G.f.: Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k - x^(2*k)))/k. - Ilya Gutkovskiy, May 18 2019

A324489 a(n) = A324488(n)/n.

Original entry on oeis.org

1, 0, 21, 31, 266, 672, 3484, 11375, 48768, 177023, 716418, 2730315, 10878520, 42485638, 169181010, 670042125, 2678678730, 10705526976, 43007270292, 173003915322, 698235680844, 2822901487191, 11439823946306, 46438021798875, 188856966693230, 769224288476860, 3137871076604544, 12817404260955810
Offset: 1

Views

Author

N. J. A. Sloane, Mar 12 2019

Keywords

Crossrefs

Programs

  • PARI
    a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n;
    a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^3)/n; \\ Seiichi Manyama, Apr 29 2021
    
  • PARI
    f(x) = ((1-3*x+x^2)*(1+3*x+x^2))^3*(1-x^2)^10/((1-4*x-x^2)*(1-x-x^2)^6*(1+x-x^2)^9);
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*log(f(x^k))/k)) \\ Seiichi Manyama, Apr 29 2021

Formula

From Seiichi Manyama, Apr 29 2021: (Start)
a(n) = (1/n) * Sum_{d|n} mu(n/d) * A001350(d)^3 = (1/n) * Sum_{d|n} mu(n/d) * A324487(d).
G.f.: Sum_{k>=1} mu(k) * log(f(x^k))/k , where f(x) = ((1-3*x+x^2) * (1+3*x+x^2))^3 * (1-x^2)^10/((1-4*x-x^2) * (1-x-x^2)^6 * (1+x-x^2)^9). (End)

Extensions

More terms from Seiichi Manyama, Apr 29 2021

A324484 Inflation orbit counts b^{(2)}_n for 2D cut and project patterns with tau-inflation.

Original entry on oeis.org

1, 0, 15, 24, 120, 240, 840, 2000, 5760, 14520, 39600, 102120, 271440, 706440, 1860360, 4860000, 12752040, 33356160, 87403800, 228750960, 599073720, 1568199600, 4106118240, 10749438000, 28143753000, 73679945040, 192900147840, 505015608720, 1322157322200, 3461443490760
Offset: 1

Views

Author

N. J. A. Sloane, Mar 12 2019

Keywords

Crossrefs

Programs

  • PARI
    a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n;
    a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^2); \\ Seiichi Manyama, Apr 29 2021

Formula

a(n) = Sum_{d|n} mu(n/d) * A001350(d)^2 = Sum_{d|n} mu(n/d) * A152152(d). - Seiichi Manyama, Apr 29 2021

Extensions

More terms from Seiichi Manyama, Apr 29 2021
Showing 1-3 of 3 results.