cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A324651 Bisection of A324650: a(n) = A000010(A276086(2*n)).

Original entry on oeis.org

1, 2, 6, 4, 8, 24, 20, 40, 120, 100, 200, 600, 500, 1000, 3000, 6, 12, 36, 24, 48, 144, 120, 240, 720, 600, 1200, 3600, 3000, 6000, 18000, 42, 84, 252, 168, 336, 1008, 840, 1680, 5040, 4200, 8400, 25200, 21000, 42000, 126000, 294, 588, 1764, 1176, 2352, 7056, 5880, 11760, 35280, 29400, 58800, 176400, 147000, 294000, 882000, 2058
Offset: 0

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Crossrefs

Programs

  • PARI
    A324650(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m *= (prime(i)-1)*(prime(i)^(((n%nextpr)/pr)-1)); n-=(n%nextpr));pr=nextpr); (m); };
    A324651(n) = A324650(n+n);
    
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324651(n) = eulerphi(A276086(n+n));

Formula

a(n) = A324650(2*n) = A000010(A276086(2*n)).

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A327860 Arithmetic derivative of the primorial base exp-function: a(n) = A003415(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 6, 21, 1, 7, 8, 31, 39, 123, 10, 45, 55, 185, 240, 705, 75, 275, 350, 1075, 1425, 3975, 500, 1625, 2125, 6125, 8250, 22125, 1, 9, 10, 41, 51, 165, 12, 59, 71, 247, 318, 951, 95, 365, 460, 1445, 1905, 5385, 650, 2175, 2825, 8275, 11100, 30075, 4125, 12625, 16750, 46625, 63375, 166125, 14, 77, 91, 329, 420
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Are there any other fixed points after 0, 1, 7, 8 and 2556? (A328110, see also A351087 and A351088).
Out of the 30030 initial terms, 19220 are multiples of 5. (See A327865).
Proof that a(n) is even if and only if n is a multiple of 4: Consider Charlie Neder's Feb 25 2019 comment in A235992. As A276086 is never a multiple of 4, and as it toggles the parity, we only need to know when A001222(A276086(n)) = A276150(n) is even. The condition for that is given in the latter sequence by David A. Corneth's Feb 27 2019 comment. From this it also follows that A166486 gives similarly the parity of terms of A342002, A351083 and A345000. See also comment in A327858. - Antti Karttunen, May 01 2022

Examples

			2556 has primorial base expansion [1,1,1,1,0,0] as 1*A002110(5) + 1*A002110(4) + 1*A002110(3) + 1*A002110(2) = 2310 + 210 + 30 + 6 = 2556. That in turn is converted by A276086 to 13^1 * 11^1 * 7^1 * 5^1 = 5005, whose arithmetic derivative is 5' * 1001 + 1001' * 5 = 1*1001 + 311*5 = 2556, thus 2556 is one of the rare fixed points (A328110) of this sequence.
		

Crossrefs

Cf. A002110 (positions of 1's), A003415, A048103, A276086, A327858, A327859, A327865, A328110 (fixed points), A328233 (positions of primes), A328242 (positions of squarefree terms), A328388, A328392, A328571, A328572, A329031, A329032, A329041, A342002.
Cf. A345000, A351074, A351075, A351076, A351077, A351080, A351083, A351084, A351087 (numbers k such that a(k) is a multiple of k), A351088.
Coincides with A329029 on positions given by A276156.
Cf. A166486 (a(n) mod 2), A353630 (a(n) mod 4).
Cf. A267263, A276150, A324650, A324653, A324655 for omega, bigomega, phi, sigma and tau applied to A276086(n).
Cf. also A351950 (analogous sequence).

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[Function[k, If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ] &@ Abs[Times @@ Power @@@ # &@ Transpose@{Prime@ Range@ Length@ k, Reverse@ k}]]@ IntegerDigits[#, b] &, 65, 0]] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327860(n) = A003415(A276086(n));
    
  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; \\ (Standalone version) - Antti Karttunen, Nov 07 2019

Formula

a(n) = A003415(A276086(n)).
a(A002110(n)) = 1 for all n >= 0.
From Antti Karttunen, Nov 03 2019: (Start)
Whenever A329041(x,y) = 1, a(x + y) = A003415(A276086(x)*A276086(y)) = a(x)*A276086(y) + a(y)*A276086(x). For example, we have:
a(n) = a(A328841(n)+A328842(n)) = A329031(n)*A328572(n) + A329032(n)*A328571(n).
A051903(a(n)) = A328391(n).
A328114(a(n)) = A328392(n).
(End)
From Antti Karttunen, May 01 2022: (Start)
a(n) = A328572(n) * A342002(n).
For all n >= 0, A000035(a(n)) = A166486(n). [See comments]
(End)

Extensions

Verbal description added to the definition by Antti Karttunen, May 01 2022

A324583 Numbers k such that k and A276086(k) are coprime, where A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 41, 43, 44, 46, 47, 48, 52, 53, 54, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 71, 72, 73, 74, 76, 78, 79, 82, 83, 86, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108, 109, 113, 114, 116, 118, 120, 121
Offset: 1

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Numbers k for which A324198(k) = 1.
For terms k > 0 it holds that:
A000005(A324580(k)) = A000005(k) * A324655(k),
A000010(A324580(k)) = A000010(k) * A324650(k),
A000203(A324580(k)) = A000203(k) * A324653(k),
and similarly for any multiplicative function.

Crossrefs

Cf. A324584 (complement), A356162 (characteristic function).
Some subsequences are: A055932A025487A002182, and also A002110.
Subsequence of A356316.
Positions of 1's in A324198, positions 0's in A351254, A356302 and A356303, positions of fixed points in A351250 and in A356309.
Cf. also A355821, A356311.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324198(n) = gcd(n,A276086(n));
    for(n=0,oo,if(1==A324198(n),print1(n,", ")));

Extensions

Initial 0 prepended by Antti Karttunen, Nov 03 2022

A324653 a(n) = A000203(A276086(n)).

Original entry on oeis.org

1, 3, 4, 12, 13, 39, 6, 18, 24, 72, 78, 234, 31, 93, 124, 372, 403, 1209, 156, 468, 624, 1872, 2028, 6084, 781, 2343, 3124, 9372, 10153, 30459, 8, 24, 32, 96, 104, 312, 48, 144, 192, 576, 624, 1872, 248, 744, 992, 2976, 3224, 9672, 1248, 3744, 4992, 14976, 16224, 48672, 6248, 18744, 24992, 74976, 81224, 243672, 57, 171, 228
Offset: 0

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Crossrefs

Cf. A267263, A276150, A324650, A324655 for omega, bigomega, phi and tau analogs, and also A324654.
Cf. also A324054.

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324653(n) = sigma(A276086(n));

Formula

a(n) = A000203(A276086(n)).
For n >= 1, a(A002110(n-1)) = 1+A000040(n).

A324655 a(n) = A000005(A276086(n)).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 4, 8, 8, 16, 12, 24, 5, 10, 10, 20, 15, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 8, 16, 16, 32, 24, 48, 10, 20, 20, 40, 30, 60, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 12, 24, 24, 48, 36, 72, 15, 30, 30, 60, 45, 90, 4, 8, 8
Offset: 0

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Alternative construction: write n down in primorial base (as in A049345, taking care of not mangling digits larger than 9), increment all the digits by one, and multiply together to get a(n). a(0) = 1 either as an empty product, or as a product of any number of 1's. See examples.

Examples

			For n = 11, its primorial base representation is "121" as 11 = 1*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*6 + 2*2 + 1*1, thus a(11) = (1+1)*(2+1)*(1+1) = 12.
For n = 13, its primorial base representation is "201" as 13 = 2*6 + 0*2 + 1*1, thus a(13) = (2+1)*(0+1)*(1+1) = 6.
		

Crossrefs

Cf. A000005, A002110 (positions of 2's), A049345, A276086.
Cf. also A267263, A276150, A324650, A324653 for omega, bigomega, phi and sigma analogs.

Programs

  • PARI
    A324655(n) = { my(t=1,m); forprime(p=2, , if(!n, return(t)); m = n%p; t *= (1+m); n = (n-m)/p); };
    
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324655(n) = numdiv(A276086(n));

Formula

a(n) = A000005(A276086(n)).
a(A002110(n)) = 2.

A346470 a(n) = psi(A276086(n)), where psi is Dedekind psi function A001615, and A276086 is the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 3, 4, 12, 12, 36, 6, 18, 24, 72, 72, 216, 30, 90, 120, 360, 360, 1080, 150, 450, 600, 1800, 1800, 5400, 750, 2250, 3000, 9000, 9000, 27000, 8, 24, 32, 96, 96, 288, 48, 144, 192, 576, 576, 1728, 240, 720, 960, 2880, 2880, 8640, 1200, 3600, 4800, 14400, 14400, 43200, 6000, 18000, 24000, 72000, 72000, 216000, 56, 168, 224, 672
Offset: 0

Views

Author

Antti Karttunen, Jul 21 2021

Keywords

Crossrefs

Cf. A001615.
Other number-theoretical functions similarly applied to A276086: A267263 (omega), A276150 (bigomega), A324650 (phi), A324653 (sigma), A324655 (tau), A327860 (arithmetic derivative).
Cf. also A346471, A346475.

Programs

  • PARI
    A346470(n) = { my(m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p+1)*(p^(e-1))); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A001615(A276086(n)).

A339820 a(n) = phi(A019565(n)), where phi is Euler totient function.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 6, 6, 12, 12, 24, 24, 48, 48, 10, 10, 20, 20, 40, 40, 80, 80, 60, 60, 120, 120, 240, 240, 480, 480, 12, 12, 24, 24, 48, 48, 96, 96, 72, 72, 144, 144, 288, 288, 576, 576, 120, 120, 240, 240, 480, 480, 960, 960, 720, 720, 1440, 1440, 2880, 2880, 5760, 5760, 16, 16, 32, 32, 64, 64, 128, 128
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Cf. A000010, A019565, A339821 (bisection).
Cf. also A324650, A339809.

Programs

  • PARI
    A339820(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= (p-1)); n >>= 1); (m); };

Formula

If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A006093(e1) * A006093(e2) * ... * A006093(ek).
a(n) = A000010(A019565(n)).

A346474 a(n) = A342414(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 1, 7, 1, 7, 1, 31, 13, 41, 1, 9, 11, 37, 2, 47, 3, 11, 7, 43, 19, 53, 1, 13, 17, 49, 11, 59, 1, 3, 5, 41, 17, 55, 1, 59, 71, 247, 53, 317, 19, 73, 23, 289, 127, 359, 13, 29, 113, 331, 37, 401, 11, 101, 67, 373, 169, 443, 1, 11, 13, 47, 5, 61, 17, 23, 43, 277, 121, 347, 1, 83, 107, 319, 71, 389, 31, 97, 8, 361, 163
Offset: 0

Views

Author

Antti Karttunen, Jul 21 2021

Keywords

Comments

For n >= 1, each term a(n) is a divisor of A342002(n).

Crossrefs

Cf. also A342002, A345930, A346475 for sequences with similar scatter plots.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342414(n) = { my(u=A003415(n)); (u/gcd(eulerphi(n),u)); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A346474(n) = A342414(A276086(n));

Formula

a(n) = A342414(A276086(n)).
a(n) = A327860(n) / gcd(A327860(n), A324650(n)).

A353563 Primorial base exp-function applied to Euler totient function: a(n) = A276086(phi(n)).

Original entry on oeis.org

2, 2, 3, 3, 9, 3, 5, 9, 5, 9, 45, 9, 25, 5, 15, 15, 225, 5, 125, 15, 25, 45, 1125, 15, 375, 25, 125, 25, 5625, 15, 7, 225, 375, 225, 625, 25, 35, 125, 625, 225, 315, 25, 175, 375, 625, 1125, 1575, 225, 175, 375, 21, 625, 7875, 125, 315, 625, 35, 5625, 39375, 225, 49, 7, 35, 21, 875, 375, 245, 21, 525, 625, 2205, 625
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353563(n) = A276086(eulerphi(n));

Formula

a(n) = A276086(A000010(n)).
Showing 1-10 of 11 results. Next