cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A325268 Triangle read by rows where T(n,k) is the number of integer partitions of n with omicron k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 7, 2, 0, 0, 1, 0, 1, 12, 1, 0, 0, 0, 1, 0, 1, 17, 2, 1, 0, 0, 0, 1, 0, 1, 24, 4, 0, 0, 0, 0, 0, 1, 0, 1, 33, 5, 1, 1, 0, 0, 0, 0, 1, 0, 1, 44, 9, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 57, 14, 3, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. The omicron of the partition is 0 if the omega-sequence is empty, 1 if it is a singleton, and otherwise the second-to-last part. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1), and its omicron is 2.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  3  0  1
  0  1  5  0  0  1
  0  1  7  2  0  0  1
  0  1 12  1  0  0  0  1
  0  1 17  2  1  0  0  0  1
  0  1 24  4  0  0  0  0  0  1
  0  1 33  5  1  1  0  0  0  0  1
  0  1 44  9  1  0  0  0  0  0  0  1
  0  1 57 14  3  0  1  0  0  0  0  0  1
  0  1 76 20  3  0  0  0  0  0  0  0  0  1
Row n = 8 counts the following partitions.
  (8)  (44)       (431)  (2222)  (11111111)
       (53)       (521)
       (62)
       (71)
       (332)
       (422)
       (611)
       (3221)
       (3311)
       (4211)
       (5111)
       (22211)
       (32111)
       (41111)
       (221111)
       (311111)
       (2111111)
		

Crossrefs

Row sums are A000041. Column k = 2 is A325267.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Switch[#,{},0,{},1,,NestWhile[Sort[Length/@Split[#]]&,#,Length[#]>1&]//First]==k&]],{n,0,10},{k,0,n}]
  • PARI
    omicron(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); r=#p; for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L); r)}
    row(n)={my(v=vector(1+n)); forpart(p=n, v[1 + omicron(Vec(p))]++); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A325247 Numbers whose omega-sequence is strict (no repeated parts).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

First differs from A323306 in having 216.
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
Also Heinz numbers of integer partitions of whose omega-sequence is strict (counted by A325250). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     3: {2}
     4: {1,1}
     5: {3}
     7: {4}
     8: {1,1,1}
     9: {2,2}
    11: {5}
    13: {6}
    16: {1,1,1,1}
    17: {7}
    19: {8}
    23: {9}
    25: {3,3}
    27: {2,2,2}
    29: {10}
    31: {11}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
		

Crossrefs

Positions of squarefree numbers in A325248.
Omega-sequence statistics: A001221 (second omega), A001222 (first omega), A071625 (third omega), A304465 (second-to-last omega), A182850 or A323014 (depth), A323022 (fourth omega), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#1]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],UnsameQ@@omseq[#]&]

A325260 Number of integer partitions of n whose omega-sequence covers an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 5, 8, 10, 12, 13, 18, 19, 24, 25, 31, 33, 40, 40, 49, 51, 59, 60, 71, 72, 83, 84, 96, 98, 111, 111, 126, 128, 142, 143, 160, 161, 178, 179, 197, 199, 218, 218, 239, 241, 261, 262, 285, 286, 309, 310, 334, 336, 361, 361, 388, 390, 416, 417, 446
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).
The Heinz numbers of these partitions are given by A325251.

Examples

			The a(1) = 1 through a(9) = 12 partitions:
  (1)  (2)   (3)   (4)    (5)    (6)    (7)     (8)     (9)
       (11)  (21)  (22)   (32)   (33)   (43)    (44)    (54)
                   (31)   (41)   (42)   (52)    (53)    (63)
                   (211)  (221)  (51)   (61)    (62)    (72)
                          (311)  (411)  (322)   (71)    (81)
                                        (331)   (332)   (441)
                                        (511)   (422)   (522)
                                        (3211)  (611)   (711)
                                                (3221)  (3321)
                                                (4211)  (4221)
                                                        (4311)
                                                        (5211)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],normQ[omseq[#]]&]],{n,0,30}]

Formula

a(n) + A325262(n) = A000041(n).
Conjectures from Chai Wah Wu, Jan 13 2021: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n > 9.
G.f.: (-x^9 - x^8 - x^7 + x^6 - x^5 - x^2 - x - 1)/((x - 1)^3*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End)

A325262 Number of integer partitions of n whose omega-sequence does not cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 6, 7, 12, 18, 29, 38, 58, 77, 110, 145, 198, 257, 345, 441, 576, 733, 942, 1184, 1503, 1875, 2352, 2914, 3620, 4454, 5493, 6716, 8221, 10001, 12167, 14723, 17816, 21459, 25836, 30988, 37139, 44365, 52956, 63022, 74934, 88873, 105296, 124469
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).

Examples

			The a(3) = 1 through a(9) = 18 partitions:
  (111)  (1111)  (2111)   (222)     (421)      (431)       (333)
                 (11111)  (321)     (2221)     (521)       (432)
                          (2211)    (4111)     (2222)      (531)
                          (3111)    (22111)    (3311)      (621)
                          (21111)   (31111)    (5111)      (3222)
                          (111111)  (211111)   (22211)     (6111)
                                    (1111111)  (32111)     (22221)
                                               (41111)     (32211)
                                               (221111)    (33111)
                                               (311111)    (42111)
                                               (2111111)   (51111)
                                               (11111111)  (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325249 (sum).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],!normQ[omseq[#]]&]],{n,0,30}]

A325267 Number of integer partitions of n with omicron 2.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 7, 12, 17, 24, 33, 44, 57, 76, 100, 129, 168, 214, 282, 355, 462, 586, 755, 937, 1202, 1493, 1900, 2349, 2944, 3621, 4520, 5514, 6813, 8298, 10150, 12240, 14918, 17931, 21654, 25917, 31081, 37029, 44256, 52474, 62405, 73724, 87378, 102887
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A304634.
The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. We define the omicron of an integer partition to be 0 if the partition is empty, 1 if it is a singleton, and otherwise the second-to-last part of its omega-sequence. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1), and its omicron is 2.

Examples

			The a(1) = 1 through a(8) = 17 partitions:
  (11)  (21)  (22)   (32)    (33)     (43)      (44)
              (31)   (41)    (42)     (52)      (53)
              (211)  (221)   (51)     (61)      (62)
                     (311)   (411)    (322)     (71)
                     (2111)  (2211)   (331)     (332)
                             (3111)   (511)     (422)
                             (21111)  (2221)    (611)
                                      (3211)    (3221)
                                      (4111)    (3311)
                                      (22111)   (4211)
                                      (31111)   (5111)
                                      (211111)  (22211)
                                                (32111)
                                                (41111)
                                                (221111)
                                                (311111)
                                                (2111111)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Switch[#,{},0,{},1,,NestWhile[Sort[Length/@Split[#]]&,#,Length[#]>1&]//First]==2&]],{n,0,30}]

A325285 Number of integer partitions of n whose omega-sequence has repeated parts.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 6, 13, 17, 26, 36, 54, 66, 98, 125, 164, 214, 285, 354, 468, 585, 745, 945, 1195, 1477, 1864, 2317, 2867, 3544, 4383, 5348, 6589, 8028, 9778, 11885, 14403, 17362, 20992, 25212, 30239, 36158, 43242, 51408, 61240, 72568, 85989, 101607, 120027
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1), which has repeated parts, so (32211) is counted under a(9).
The Heinz numbers of these partitions are given by A325411.

Examples

			The a(3) = 1 through a(8) = 17 partitions:
  (21)  (31)   (32)    (42)     (43)      (53)
        (211)  (41)    (51)     (52)      (62)
               (221)   (321)    (61)      (71)
               (311)   (411)    (322)     (332)
               (2111)  (3111)   (331)     (422)
                       (21111)  (421)     (431)
                                (511)     (521)
                                (2221)    (611)
                                (3211)    (3221)
                                (4111)    (4211)
                                (22111)   (5111)
                                (31111)   (22211)
                                (211111)  (32111)
                                          (41111)
                                          (221111)
                                          (311111)
                                          (2111111)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@omseq[#]&]],{n,0,30}]

A325411 Numbers whose omega-sequence has repeated parts.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

First differs from A323304 in lacking 216. First differs from A106543 in having 144.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose omega-sequence has repeated parts. The enumeration of these partitions by sum is given by A325285.
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), which has repeated parts, so 180 is in the sequence.

Examples

			The sequence of terms together with their omega-sequences begins:
   6: 2 2 1       51: 2 2 1         86: 2 2 1        119: 2 2 1
  10: 2 2 1       52: 3 2 2 1       87: 2 2 1        120: 5 3 2 2 1
  12: 3 2 2 1     54: 4 2 2 1       88: 4 2 2 1      122: 2 2 1
  14: 2 2 1       55: 2 2 1         90: 4 3 2 2 1    123: 2 2 1
  15: 2 2 1       56: 4 2 2 1       91: 2 2 1        124: 3 2 2 1
  18: 3 2 2 1     57: 2 2 1         92: 3 2 2 1      126: 4 3 2 2 1
  20: 3 2 2 1     58: 2 2 1         93: 2 2 1        129: 2 2 1
  21: 2 2 1       60: 4 3 2 2 1     94: 2 2 1        130: 3 3 1
  22: 2 2 1       62: 2 2 1         95: 2 2 1        132: 4 3 2 2 1
  24: 4 2 2 1     63: 3 2 2 1       96: 6 2 2 1      133: 2 2 1
  26: 2 2 1       65: 2 2 1         98: 3 2 2 1      134: 2 2 1
  28: 3 2 2 1     66: 3 3 1         99: 3 2 2 1      135: 4 2 2 1
  30: 3 3 1       68: 3 2 2 1      102: 3 3 1        136: 4 2 2 1
  33: 2 2 1       69: 2 2 1        104: 4 2 2 1      138: 3 3 1
  34: 2 2 1       70: 3 3 1        105: 3 3 1        140: 4 3 2 2 1
  35: 2 2 1       72: 5 2 2 1      106: 2 2 1        141: 2 2 1
  38: 2 2 1       74: 2 2 1        108: 5 2 2 1      142: 2 2 1
  39: 2 2 1       75: 3 2 2 1      110: 3 3 1        143: 2 2 1
  40: 4 2 2 1     76: 3 2 2 1      111: 2 2 1        144: 6 2 2 1
  42: 3 3 1       77: 2 2 1        112: 5 2 2 1      145: 2 2 1
  44: 3 2 2 1     78: 3 3 1        114: 3 3 1        146: 2 2 1
  45: 3 2 2 1     80: 5 2 2 1      115: 2 2 1        147: 3 2 2 1
  46: 2 2 1       82: 2 2 1        116: 3 2 2 1      148: 3 2 2 1
  48: 5 2 2 1     84: 4 3 2 2 1    117: 3 2 2 1      150: 4 3 2 2 1
  50: 3 2 2 1     85: 2 2 1        118: 2 2 1        152: 4 2 2 1
		

Crossrefs

Positions of nonsquarefree numbers in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],!UnsameQ@@omseq[#]&]
Showing 1-7 of 7 results.