A326017
Triangle read by rows where T(n,k) is the number of knapsack partitions of n with maximum k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 3, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 1, 1, 0, 1, 1, 2, 2, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 1, 4, 3, 2, 1, 1, 0, 1, 1, 3, 3, 4, 6, 4, 3, 2, 1, 1, 0, 1, 1, 1, 1, 3, 1, 6, 4
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 1 1 1 1
0 1 1 2 1 1
0 1 1 1 2 1 1
0 1 1 2 3 2 1 1
0 1 1 2 1 3 2 1 1
0 1 1 2 2 4 3 2 1 1
0 1 1 2 3 1 4 3 2 1 1
0 1 1 3 3 4 6 4 3 2 1 1
0 1 1 1 1 3 1 6 4 3 2 1 1
0 1 1 3 3 5 4 7 6 4 3 2 1 1
0 1 1 2 3 5 4 1 7 6 4 3 2 1 1
0 1 1 2 3 4 6 6 11 7 6 4 3 2 1 1
Row n = 9 counts the following partitions:
(111111111) (22221) (333) (432) (54) (63) (72) (81) (9)
(3222) (441) (522) (621) (711)
(531) (6111)
(51111)
-
ks[n_]:=Select[IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&];
Table[Length[Select[ks[n],Length[#]==k==0||Max@@#==k&]],{n,0,15},{k,0,n}]
A326016
Number of knapsack partitions of n such that no addition of one part up to the maximum is knapsack.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 3, 0, 0, 0, 1, 0, 8, 0, 8, 4, 3, 0, 11, 5, 3, 2, 5, 0, 29, 2, 9, 8, 20, 2
Offset: 1
The initial terms count the following partitions:
15: (5,4,3,3)
21: (7,6,5,3)
21: (7,5,3,3,3)
24: (8,7,6,3)
25: (7,5,5,4,4)
27: (9,8,7,3)
27: (9,7,6,5)
27: (8,7,3,3,3,3)
31: (10,8,6,6,1)
33: (11,9,7,3,3)
33: (11,8,5,5,4)
33: (11,7,6,6,3)
33: (11,7,3,3,3,3,3)
33: (11,5,5,4,4,4)
33: (10,9,8,3,3)
33: (10,8,6,6,3)
33: (10,8,3,3,3,3,3)
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
ksQ[y_]:=Length[sums[Sort[y]]]==Times@@(Length/@Split[Sort[y]]+1)-1;
maxks[n_]:=Select[IntegerPartitions[n],ksQ[#]&&Select[Table[Sort[Append[#,i]],{i,Range[Max@@#]}],ksQ]=={}&];
Table[Length[maxks[n]],{n,30}]
A326015
Number of strict knapsack partitions of n such that no superset with the same maximum is knapsack.
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 4, 4, 5, 3, 3, 4, 6, 2, 7, 6, 13, 9, 19, 16, 27, 21, 40, 33, 47, 37, 54, 48, 66, 51, 65, 65, 77, 64, 80, 71, 96, 60, 106, 95, 112, 93, 152, 114, 191, 131, 242, 192, 303, 210, 366, 300, 482, 352, 581, 450, 713, 539, 882, 689, 995
Offset: 1
The a(1) = 1 through a(17) = 6 strict knapsack partitions (empty columns not shown):
{1} {2,1} {3,1} {3,2} {4,2,1} {5,2,1} {4,3,2} {6,3,1} {5,4,2}
{5,3,1} {7,2,1} {6,3,2}
{6,2,1} {6,4,1}
{7,3,1}
.
{5,4,3} {6,4,3} {6,5,3} {6,5,4} {7,5,4} {7,6,4}
{7,3,2} {6,5,2} {8,5,1} {7,6,2} {9,4,3} {9,5,3}
{7,4,1} {7,4,2} {9,3,2} {8,4,2,1} {9,6,1} {9,6,2}
{8,3,1} {7,5,1} {9,4,2,1} {8,4,3,2}
{9,3,1} {9,5,2,1}
{10,4,2,1}
-
ksQ[y_]:=UnsameQ@@Total/@Union[Subsets[y]]
maxsks[n_]:=Select[Select[IntegerPartitions[n],UnsameQ@@#&&ksQ[#]&],Select[Table[Append[#,i],{i,Complement[Range[Max@@#],#]}],ksQ]=={}&];
Table[Length[maxsks[n]],{n,30}]
A326034
Number of knapsack partitions of n with largest part 3.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 1, 3, 2
Offset: 0
The initial values count the following partitions:
3: (3)
4: (3,1)
5: (3,2)
5: (3,1,1)
6: (3,3)
7: (3,3,1)
7: (3,2,2)
8: (3,3,2)
8: (3,3,1,1)
9: (3,3,3)
9: (3,2,2,2)
10: (3,3,3,1)
10: (3,3,2,2)
11: (3,3,3,2)
11: (3,3,3,1,1)
11: (3,2,2,2,2)
12: (3,3,3,3)
13: (3,3,3,3,1)
13: (3,3,3,2,2)
13: (3,2,2,2,2,2)
14: (3,3,3,3,2)
14: (3,3,3,3,1,1)
15: (3,3,3,3,3)
15: (3,2,2,2,2,2,2)
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
kst[n_]:=Select[IntegerPartitions[n,All,{1,2,3}],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
Table[Length[Select[kst[n],Max@@#==3&]],{n,0,30}]
A326019
Heinz numbers of non-knapsack partitions such that every non-singleton submultiset has a different sum.
Original entry on oeis.org
12, 30, 40, 63, 70, 112, 154, 165, 198, 220, 273, 286, 325, 351, 352, 364, 442, 561, 595, 646, 714, 741, 748, 765, 832, 850, 874, 918, 931, 952, 988, 1045, 1173, 1254, 1334, 1425, 1495, 1539, 1564, 1653, 1672, 1771, 1794, 1798, 1900, 2139, 2176, 2204, 2254
Offset: 1
The sequence of terms together with their prime indices begins:
12: {1,1,2}
30: {1,2,3}
40: {1,1,1,3}
63: {2,2,4}
70: {1,3,4}
112: {1,1,1,1,4}
154: {1,4,5}
165: {2,3,5}
198: {1,2,2,5}
220: {1,1,3,5}
273: {2,4,6}
286: {1,5,6}
325: {3,3,6}
351: {2,2,2,6}
352: {1,1,1,1,1,5}
364: {1,1,4,6}
442: {1,6,7}
561: {2,5,7}
595: {3,4,7}
646: {1,7,8}
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
Select[Range[1000],!UnsameQ@@hwt/@Divisors[#]&&UnsameQ@@hwt/@Select[Divisors[#],!PrimeQ[#]&]&]
A326033
Number of knapsack partitions of n such that no addition of one part equal to an existing part is knapsack.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 3, 0, 0, 1, 1, 0, 8, 0, 8, 4, 3, 0, 11, 5, 3, 4, 5, 0, 30, 2, 9, 9, 20, 3, 37, 6, 18, 16, 37, 20, 71, 12, 37, 40
Offset: 1
The partition (10,8,6,6) is counted under a(30) because (10,10,8,6,6), (10,8,8,6,6), and (10,8,6,6,6) are not knapsack.
-
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
ksQ[y_]:=Length[sums[Sort[y]]]==Times@@(Length/@Split[Sort[y]]+1)-1;
maxks[n_]:=Select[IntegerPartitions[n],ksQ[#]&&Select[Table[Sort[Append[#,i]],{i,Union[#]}],ksQ]=={}&];
Table[Length[maxks[n]],{n,30}]
Showing 1-6 of 6 results.
Comments