cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A326149 Numbers whose product of prime indices is divisible by their sum of prime indices.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 49, 53, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 113, 125, 127, 131, 137, 139, 149, 150, 151, 154, 157, 163, 165, 167, 169, 173, 179, 181, 190, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose product of parts is divisible by their sum of parts. The enumeration of these partitions by sum is given by A057568.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   30: {1,2,3}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
   59: {17}
		

Crossrefs

Satisfies A056239(a(n))|A003963(a(n)).
The nonprime case is A326150, with squarefree case A326158.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],Divisible[Times@@primeMS[#],Plus@@primeMS[#]]&]

A326155 Positive integers whose sum of prime indices is divisible by their product of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 29, 30, 31, 32, 37, 40, 41, 43, 47, 48, 53, 59, 61, 64, 67, 71, 73, 79, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 173, 179, 181, 191, 192, 193
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of the integer partitions counted by A057567. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  23: {9}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
  37: {12}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Divisible[Plus@@primeMS[#],Times@@primeMS[#]]&]

A326156 Number of nonempty subsets of {1..n} whose product is divisible by their sum.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 19, 34, 64, 129, 267, 541, 1104, 2253, 4694, 9804, 18894, 38539, 76063, 155241, 311938, 636120, 1299869, 2653853, 5183363, 10272289, 20958448, 40945577, 81745769, 167048919, 329598054, 671038751, 1301431524, 2618590422, 5305742557, 10582105199, 20660489585, 42075929255, 85443680451, 172057673225, 338513788818
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 19 subsets:
  {1}  {1}  {1}      {1}      {1}          {1}
       {2}  {2}      {2}      {2}          {2}
            {3}      {3}      {3}          {3}
            {1,2,3}  {4}      {4}          {4}
                     {1,2,3}  {5}          {5}
                              {1,2,3}      {6}
                              {1,4,5}      {3,6}
                              {2,3,5}      {1,2,3}
                              {3,4,5}      {1,4,5}
                              {1,2,3,4,5}  {2,3,5}
                                           {2,4,6}
                                           {3,4,5}
                                           {4,5,6}
                                           {1,2,3,6}
                                           {1,3,5,6}
                                           {3,4,5,6}
                                           {1,2,3,4,5}
                                           {1,2,3,4,6}
                                           {2,3,4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{1,n}],Divisible[Times@@#,Plus@@#]&]],{n,0,10}]

Extensions

a(21)-a(30) from Alois P. Heinz, Jun 13 2019
a(31)-a(40) from Bert Dobbelaere, Jun 22 2019

A326151 Numbers whose product of prime indices is twice their sum of prime indices.

Original entry on oeis.org

49, 63, 65, 81, 150, 154, 190, 198, 364, 468, 580, 840, 952, 1080, 1224, 1480, 2128, 2288, 2736, 3440, 5152, 5280, 6624, 8480, 9408, 10816, 12096, 12992, 15552, 16704, 19520, 24960, 26752, 27776, 35712, 44800, 45440, 56576, 57600, 66304, 85248, 101120, 118272
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

The only squarefree terms are 65, 154, and 190. See A326157 for a proof.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose product of parts is twice their sum of parts. The enumeration of these partitions by sum is given by A326152.

Examples

			The sequence of terms together with their prime indices begins:
     49: {4,4}
     63: {2,2,4}
     65: {3,6}
     81: {2,2,2,2}
    150: {1,2,3,3}
    154: {1,4,5}
    190: {1,3,8}
    198: {1,2,2,5}
    364: {1,1,4,6}
    468: {1,1,2,2,6}
    580: {1,1,3,10}
    840: {1,1,1,2,3,4}
    952: {1,1,1,4,7}
   1080: {1,1,1,2,2,2,3}
   1224: {1,1,1,2,2,7}
   1480: {1,1,1,3,12}
   2128: {1,1,1,1,4,8}
   2288: {1,1,1,1,5,6}
   2736: {1,1,1,1,2,2,8}
   3440: {1,1,1,1,3,14}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Times@@primeMS[#]==2*Plus@@primeMS[#]&]
  • PARI
    is(k) = {my(f=factor(k)); for(i=1, #f~, f[i, 1]=primepi(f[i, 1])); factorback(f)==2*sum(i=1, #f~, f[i, 2]*f[i, 1]); } \\ Jinyuan Wang, Jun 27 2020

A326154 Denominator of the product of prime indices of n divided by the sum of prime indices of n, n > 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 5, 5, 4, 1, 5, 1, 5, 3, 6, 1, 5, 2, 7, 3, 3, 1, 1, 1, 5, 7, 8, 7, 3, 1, 9, 2, 2, 1, 7, 1, 7, 7, 10, 1, 3, 1, 7, 9, 4, 1, 7, 8, 7, 5, 11, 1, 7, 1, 12, 1, 6, 1, 4, 1, 9, 11, 2, 1, 7, 1, 13, 4, 5, 9, 3, 1, 7, 1, 14, 1, 1, 10
Offset: 2

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence A326153/A326154 begins: 1, 1, 1/2, 1, 2/3, 1, 1/3, 1, 3/4, 1, 1/2, 1, 4/5, 6/5, 1/4, 1, 4/5, 1, 3/5, 4/3, 5/6, 1, 2/5, 3/2, 6/7, 4/3.
		

Crossrefs

Denominator of A003963(n)/A056239(n).
Positions of ones are A326149.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Denominator[Times@@primeMS[n]/Plus@@primeMS[n]],{n,2,100}]

A326150 Nonprime numbers whose product of prime indices is divisible by their sum of prime indices.

Original entry on oeis.org

9, 30, 49, 63, 65, 81, 84, 108, 125, 150, 154, 165, 169, 190, 198, 200, 259, 264, 273, 333, 351, 361, 364, 385, 390, 435, 442, 468, 481, 490, 495, 506, 525, 561, 580, 595, 609, 624, 630, 658, 675, 700, 714, 741, 765, 781, 783, 810, 840, 841, 846, 874, 900, 918
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    9: {2,2}
   30: {1,2,3}
   49: {4,4}
   63: {2,2,4}
   65: {3,6}
   81: {2,2,2,2}
   84: {1,1,2,4}
  108: {1,1,2,2,2}
  125: {3,3,3}
  150: {1,2,3,3}
  154: {1,4,5}
  165: {2,3,5}
  169: {6,6}
  190: {1,3,8}
  198: {1,2,2,5}
  200: {1,1,1,3,3}
  259: {4,12}
  264: {1,1,1,2,5}
  273: {2,4,6}
  333: {2,2,12}
		

Crossrefs

Satisfies A056239(a(n))|A003963(a(n)).
The case with primes included is A326149. The squarefree case A326158.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],!PrimeQ[#]&&Divisible[Times@@primeMS[#],Plus@@primeMS[#]]&]

A326158 Nonprime squarefree numbers whose product of prime indices is divisible by their sum of prime indices.

Original entry on oeis.org

30, 65, 154, 165, 190, 259, 273, 385, 390, 435, 442, 481, 506, 561, 595, 609, 658, 714, 741, 781, 874, 935, 1001, 1110, 1118, 1173, 1254, 1281, 1330, 1363, 1403, 1430, 1455, 1469, 1495, 1505, 1653, 1691, 1771, 1786, 1794, 1798, 1887, 1958, 2035, 2067, 2139
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    30: {1,2,3}
    65: {3,6}
   154: {1,4,5}
   165: {2,3,5}
   190: {1,3,8}
   259: {4,12}
   273: {2,4,6}
   385: {3,4,5}
   390: {1,2,3,6}
   435: {2,3,10}
   442: {1,6,7}
   481: {6,12}
   506: {1,5,9}
   561: {2,5,7}
   595: {3,4,7}
   609: {2,4,10}
   658: {1,4,15}
   714: {1,2,4,7}
   741: {2,6,8}
   781: {5,20}
		

Crossrefs

Satisfies A056239(a(n))|A003963(a(n)).
The case with squarefree numbers included is A326150.
The case with primes and squarefree numbers included is A326149.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],!PrimeQ[#]&&SquareFreeQ[#]&&Divisible[Times@@primeMS[#],Plus@@primeMS[#]]&]

A326172 Number of nonempty subsets of {2..n} whose product is divisible by their sum.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 12, 21, 34, 69, 140, 278, 561, 1144, 2367, 4936, 9503, 19368, 38202, 77911, 156458, 318911, 651462, 1329624, 2596458, 5144833, 10494839, 20500025, 40923643, 83620258, 164982516, 335873558, 651383048, 1310551707, 2655240565, 5295397093, 10338145110, 21052407259, 42748787713, 86078893923, 169349494068
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2019

Keywords

Examples

			The a(2) = 1 through a(7) = 21 subsets:
  {2}  {2}  {2}  {2}      {2}          {2}
       {3}  {3}  {3}      {3}          {3}
            {4}  {4}      {4}          {4}
                 {5}      {5}          {5}
                 {2,3,5}  {6}          {6}
                 {3,4,5}  {3,6}        {7}
                          {2,3,5}      {3,6}
                          {2,4,6}      {2,3,5}
                          {3,4,5}      {2,4,6}
                          {4,5,6}      {2,5,7}
                          {3,4,5,6}    {3,4,5}
                          {2,3,4,5,6}  {3,4,7}
                                       {3,5,7}
                                       {4,5,6}
                                       {2,3,6,7}
                                       {2,5,6,7}
                                       {3,4,5,6}
                                       {3,5,6,7}
                                       {2,3,4,5,6}
                                       {2,3,4,5,7}
                                       {2,4,5,6,7}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n],{1,n}],Divisible[Times@@#,Plus@@#]&]],{n,0,10}]

Extensions

a(21)-a(29) from Alois P. Heinz, Jun 13 2019
a(30)-a(40) from Bert Dobbelaere, Jun 22 2019

A326179 Number of subsets of {1..n} containing n whose product is divisible by their sum.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 9, 15, 30, 65, 138, 274, 563, 1149, 2441, 5110, 9090, 19645, 37524, 79178, 156697, 324182, 663749, 1353984, 2529510, 5088926, 10686159, 19987129, 40800192, 85303150, 162549135, 341440697, 630392773, 1317158898, 2687152135, 5276362642, 10078384386, 21415439670, 43367751196, 86613992774, 166456115593
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2019

Keywords

Examples

			The a(1) = 1 through a(7) = 15 subsets:
  {1}  {2}  {3}      {4}  {5}          {6}          {7}
            {1,2,3}       {1,4,5}      {3,6}        {1,6,7}
                          {2,3,5}      {2,4,6}      {2,5,7}
                          {3,4,5}      {4,5,6}      {3,4,7}
                          {1,2,3,4,5}  {1,2,3,6}    {3,5,7}
                                       {1,3,5,6}    {1,2,4,7}
                                       {3,4,5,6}    {2,3,6,7}
                                       {1,2,3,4,6}  {2,5,6,7}
                                       {2,3,4,5,6}  {3,5,6,7}
                                                    {1,2,5,6,7}
                                                    {1,3,4,5,7}
                                                    {1,3,4,6,7}
                                                    {2,3,4,5,7}
                                                    {2,4,5,6,7}
                                                    {1,2,3,4,5,6,7}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{1,n}],MemberQ[#,n]&&Divisible[Times@@#,Plus@@#]&]],{n,0,10}]

Extensions

a(21)-a(30) from Alois P. Heinz, Jun 13 2019
a(31)-a(40) from Bert Dobbelaere, Jun 23 2019

A326180 Number of maximal subsets of {1..n} containing n whose product is divisible by their sum.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 1, 16, 1, 1, 1, 27, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2019

Keywords

Examples

			The a(6) = 3, a(10) = 11, and a(12) = 16 subsets:
  {1,3,5,6}    {1,2,4,5,6,7,10}      {1,2,3,4,5,6,7,8,12}
  {1,2,3,4,6}  {1,2,3,4,5,7,8,10}    {1,3,4,5,6,7,8,10,12}
  {2,3,4,5,6}  {1,2,3,4,6,7,9,10}    {1,3,4,6,7,8,9,10,12}
               {1,2,3,5,6,7,8,10}    {1,3,4,5,6,8,10,11,12}
               {1,2,3,5,7,8,9,10}    {1,2,3,4,5,6,8,9,10,12}
               {1,2,5,6,7,8,9,10}    {1,2,3,4,6,7,8,9,11,12}
               {1,3,4,5,6,7,9,10}    {1,2,3,5,6,7,8,9,10,12}
               {1,3,4,6,7,8,9,10}    {1,2,3,5,6,7,8,9,11,12}
               {1,4,5,6,7,8,9,10}    {1,3,4,5,6,7,8,9,11,12}
               {1,2,3,4,5,6,8,9,10}  {1,2,3,4,6,7,8,10,11,12}
               {2,3,4,5,6,7,8,9,10}  {1,2,3,4,6,8,9,10,11,12}
                                     {1,3,5,6,7,8,9,10,11,12}
                                     {1,2,3,4,5,6,7,9,10,11,12}
                                     {1,2,3,4,5,7,8,9,10,11,12}
                                     {1,2,4,5,6,7,8,9,10,11,12}
                                     {2,3,4,5,6,7,8,9,10,11,12}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n],{1,n}],MemberQ[#,n]&&Divisible[Times@@#,Plus@@#]&]]],{n,0,10}]

Formula

a(A060462(n)) = 1.
Showing 1-10 of 14 results. Next