cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A078708 Sum of divisors d of n such that n/d is not congruent to 0 mod 3.

Original entry on oeis.org

1, 3, 3, 7, 6, 9, 8, 15, 9, 18, 12, 21, 14, 24, 18, 31, 18, 27, 20, 42, 24, 36, 24, 45, 31, 42, 27, 56, 30, 54, 32, 63, 36, 54, 48, 63, 38, 60, 42, 90, 42, 72, 44, 84, 54, 72, 48, 93, 57, 93, 54, 98, 54, 81, 72, 120, 60, 90, 60, 126, 62, 96, 72, 127, 84, 108, 68, 126, 72, 144
Offset: 1

Views

Author

Vladeta Jovovic, Dec 18 2002

Keywords

Crossrefs

Cf. A002131 (k=2), this sequence (k=3), A285895 (k=4), A285896 (k=5).

Programs

  • Mathematica
    f[p_, e_] := If[p == 3, 3^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
  • PARI
    for(n=1,70,d=divisors(n); s=0; for(j=1,matsize(d)[2],if((n/d[j])%3>0,s=s+d[j])); print1(s,","))
    
  • PARI
    a(n)=sumdiv(n,d,if((n/d)%3,1,0)*d)

Formula

G.f.: Sum_{k>0} x^k*(1+x^k)^2*(1+x^(2*k))/(1-x^(3*k))^2.
a(n) = (A000203(3*n)-A000203(n))/3. - Vladeta Jovovic, Dec 22 2003
G.f.: Sum_{k>=1} k*x^k*(1 + x^k)/(1 - x^(3*k)). - Ilya Gutkovskiy, Sep 13 2019
From R. J. Mathar, May 25 2020: (Start)
a(n) = A326399(n) + A326400(n).
a(n) = A000203(n) - A000203(n/3), where A000203(.) = 0 for non-integer arguments. (End)
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(3^e) = 3^e and a(p^e) = (p^(e+1)-1)/(p-1) if p != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/27 = 0.731081... (A346933). (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^s). - Amiram Eldar, Dec 30 2022

Extensions

Extended by Klaus Brockhaus and Benoit Cloitre, Dec 20 2002

A326400 Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 5, 0, 7, 1, 6, 0, 8, 3, 10, 1, 9, 0, 15, 0, 13, 1, 15, 5, 14, 0, 16, 1, 21, 0, 21, 3, 19, 8, 18, 0, 20, 0, 35, 1, 24, 0, 27, 9, 25, 1, 30, 0, 36, 3, 28, 1, 27, 16, 40, 0, 31, 1, 45, 0, 32, 0, 42, 14, 39, 0, 39, 3, 56, 1, 45, 0, 38, 15, 40, 8, 42, 0, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[k x^(2 k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]

Formula

a(n) = Sum_{d|n, n/d==2 (mod 3)} d.
G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(3*k-1))^2. - Seiichi Manyama, Jun 29 2023

A326401 Expansion of Sum_{k>=1} k * x^k / (1 + x^k + x^(2*k)).

Original entry on oeis.org

1, 1, 3, 3, 4, 3, 8, 5, 9, 4, 10, 9, 14, 8, 12, 11, 16, 9, 20, 12, 24, 10, 22, 15, 21, 14, 27, 24, 28, 12, 32, 21, 30, 16, 32, 27, 38, 20, 42, 20, 40, 24, 44, 30, 36, 22, 46, 33, 57, 21, 48, 42, 52, 27, 40, 40, 60, 28, 58, 36, 62, 32, 72, 43, 56, 30, 68, 48, 66, 32
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[k x^k/(1 + x^k + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 3]] &] - DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 70}]
    f[p_, e_] := Which[p == 3, p^e, Mod[p, 3] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 3] == 2, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 3, 3^f[i,2], if(f[i,1]%3 == 1, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1), (f[i,1]^(f[i,2]+1) + (-1)^f[i,2])/(f[i,1] + 1))));} \\ Amiram Eldar, Nov 06 2022

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} d - Sum_{d|n, n/d==2 (mod 3)} d.
a(n) = A326399(n) - A326400(n).
Multiplicative with a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1 (mod 3), and (p^(e+1) + (-1)^e)/(p + 1) if p == 2 (mod 3). - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2) * Product_{primes p == 2 (mod 3)} 1/(1 + 1/p^2) = (1/2) * A175646 * (2*Pi^2/27)/A340577 = 0.3906512064... . - Amiram Eldar, Nov 06 2022

A363897 Expansion of Sum_{k>0} k * x^k / (1 - x^(5*k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 12, 14, 13, 14, 15, 17, 17, 21, 19, 20, 22, 24, 23, 28, 25, 27, 27, 28, 29, 35, 32, 34, 36, 34, 35, 43, 37, 38, 39, 40, 42, 51, 43, 48, 45, 47, 47, 59, 49, 50, 52, 54, 53, 63, 60, 57, 57, 58, 59, 70, 62, 64, 66, 68, 65, 84, 67, 68, 69, 70, 72, 86, 73, 74, 75, 77, 84, 94
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==1)*d);

Formula

a(n) = Sum_{d|n, n/d==1 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-4) / (1 - x^(5*k-4))^2.

A364232 Expansion of Sum_{k>=0} x^(3*k+1) / (1 + x^(3*k+1))^2.

Original entry on oeis.org

1, -2, 3, -3, 5, -6, 8, -10, 9, -9, 11, -9, 14, -16, 15, -19, 17, -18, 20, -17, 24, -21, 23, -30, 26, -28, 27, -24, 29, -27, 32, -42, 33, -33, 40, -27, 38, -40, 42, -53, 41, -48, 44, -35, 45, -45, 47, -57, 57, -47, 51, -42, 53, -54, 56, -80, 60, -57, 59, -51, 62, -64, 72, -83, 70, -63, 68, -53, 69, -72
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^(3 k + 1)/(1 + x^(3 k + 1))^2, {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) # &, MemberQ[{1}, Mod[n/#, 3]] &], {n, 1, 70}]

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} (-1)^(d+1) * d.
Showing 1-5 of 5 results.