cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A327153 Number of divisors d of n such that sigma(d)*d is equal to n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Comments

a(n) tells how many times in total n occurs in A064987.

Examples

			336 has 20 divisors: [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336]. Only two of them, d=12 and d=14, satisfy sigma(d) = (336/d), thus a(336) = 2.
		

Crossrefs

Cf. A000203, A064987, A327165 (positions of nonzero terms).
Cf. also A324539.

Programs

  • PARI
    A327153(n) = sumdiv(n, d, (n==d*sigma(d)));

Formula

a(n) = Sum_{d|n} [A000203(d)*d == n], where [ ] is the Iverson bracket.

A337873 Numbers m such that the equation m = k*sigma(k) has more than one solution.

Original entry on oeis.org

336, 5952, 10080, 27776, 44352, 60480, 61152, 97536, 102816, 127680, 178560, 185472, 196560, 260400, 292320, 333312, 455168, 472416, 578592, 635712, 758016, 785664, 833280, 961632, 1083264, 1179360, 1189440, 1270752, 1330560, 1530816, 1717632, 1815072, 1821312, 1834560
Offset: 1

Views

Author

Bernard Schott, Sep 27 2020

Keywords

Comments

The map k -> k*sigma(k) = m is not injective (A064987), this sequence lists in increasing order the integers m that have several preimages.
These terms m satisfy A327153(m) > 1.
If 2^p-1 and 2^r-1 are distinct Mersenne primes (A000668), then k = (2^p-1)* 2^(r-1) and q = (2^r-1) * 2^(p-1) satisfy k*sigma(k) = q*sigma(q) = m = (2^p-1) * (2^r-1) * 2^(p+r-1) [see examples a(1) and a(2)].
The multiplicativity of sigma(k) ensures an infinity of solutions and thus of terms m [see example a(3)].

Examples

			For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3.
For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5.
For a(3): 60 * sigma(60) = 70 * sigma(70) = 10080 with 60/12 = 70/14 = 5.
a(16) = 333312 is the smallest term with 3 preimages because 336 * sigma(336) = 372 * sigma(372) = 434 * sigma(434) = 333312.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.

Crossrefs

Cf. A327153. Subsequence of A327165.
Cf. A212490, A337874 (preimages), A337875 (primitive terms).

Programs

  • Mathematica
    m = 2*10^6; v = Table[0, {m}]; Do[i = n*DivisorSigma[1, n]; If[i <= m, v[[i]]++], {n, 1, Floor@Sqrt[m]}]; Position[v, ?(# > 1 &)] // Flatten (* _Amiram Eldar, Sep 28 2020 *)
  • PARI
    upto(n) = {m = Map(); res = List(); n = sqrtint(n); for(i = 1, n, c = i*sigma(i); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1) , mapput(m, c, 1); ) ); listsort(res, 1); select(x -> x <= (n+1)^2, res) } \\ David A. Corneth, Sep 27 2020
    
  • PARI
    isok(m) = {my(nb=0); fordiv(m, d, if (d*sigma(d) == m, nb++; if (nb>1, return(1)));); return (0);} \\ Michel Marcus, Sep 29 2020

Extensions

More terms from David A. Corneth, Sep 27 2020

A327599 Odd numbers k that have a divisor d such that sigma(d)*d is equal to k.

Original entry on oeis.org

1, 117, 775, 2793, 9801, 16093, 30927, 88723, 90675, 137541, 292537, 326781, 488125, 732511, 796797, 954273, 1882881, 1926183, 2164575, 2896363, 3500157, 3618459, 4985713, 6725201, 7595775, 8042167, 10380591, 12326221, 12472075, 14076543, 16092297, 20456373, 23968425, 25774633
Offset: 1

Views

Author

David A. Corneth, Sep 18 2019

Keywords

Comments

We need d and sigma(d) odd which happens precisely when d is an odd square.

Examples

			As 9 * sigma(9) = 9 * (1 + 3 + 9) = 9 * 13 = 117 is odd, 117 is in the sequence.
		

Crossrefs

Odd terms of A327165.
Cf. A064987.

Programs

  • Mathematica
    Select[2Range[0, 9999] + 1, MemberQ[(DivisorSigma[1, #] * # &)/@Divisors[#], #] &] (* Alonso del Arte, Sep 18 2019 *)
  • PARI
    upto(n) = {my(res = List()); forstep(i = 1, sqrtnint(n, 4), 2, c = i^2*sigma(i^2); if(c <= n, listput(res, c))); listsort(res, 1); res}

A338520 Integers that can be expressed as a product d*sigma(d), where sigma is the sum of divisors function, in a single way.

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 72, 117, 120, 132, 180, 182, 306, 360, 380, 496, 552, 672, 702, 775, 792, 840, 870, 992, 1080, 1092, 1406, 1440, 1568, 1584, 1680, 1722, 1836, 1892, 2016, 2160, 2184, 2256, 2280, 2793, 2862, 3276, 3312, 3510, 3540, 3600, 3672, 3696, 3782, 3960
Offset: 1

Views

Author

Michel Marcus, Nov 01 2020

Keywords

Comments

Integers m such that A327153(m) = 1.

Crossrefs

Subsequence of A327165.
Subsequences: A000396 (perfect numbers), A036690 (p*(p+1)).
Cf. A338519 (similar for number of divisors).

Programs

  • PARI
    f(n) = sumdiv(n, d, d*sigma(d)==n); \\ A327153
    isok(n) = f(n)==1;

A339472 Integers k for which there is a divisor d, such that sigma(k) = d*sigma(d).

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 117, 120, 132, 140, 182, 306, 380, 496, 552, 672, 775, 870, 992, 1080, 1287, 1406, 1428, 1680, 1722, 1892, 2016, 2184, 2256, 2480, 2793, 2862, 3276, 3540, 3640, 3782, 3960, 4060, 4556, 4560, 4650, 5112, 5382, 5402, 5460, 6120, 6320, 6552
Offset: 1

Views

Author

Marius A. Burtea, Dec 06 2020

Keywords

Comments

All terms are nonprimes.
The sequence includes all numbers of the form p*(p + 1) with p prime. Indeed: sigma(p*(p + 1)) = sigma(p)*sigma(p + 1) = (p + 1)*sigma(p + 1). So A036690 is a subsequence. Thus, the sequence is infinite.
Let k >= 1. If p and q = 1 + p + ... + p^(2*k) are prime numbers, then m = p^(2*k)*q is a term. Indeed, sigma(m) = sigma(p^(2*k)*q) = sigma(p^(2*k))*sigma(q) = q*sigma(q).
p is in: A053182 (k = 1), A065509 (k = 2), A163268 (k = 3), and A240693 (k = 5).
For k = 4 there are no prime p because 1 + p + p^2 + p^3 + p^4 + p^5 + p^6 + p^7 + p^8 = (p^6 + p^3 + 1)*(p^2 + p + 1).
If m = 2^(p - 1)*(2^p - 1), p >= 1, (see A006516), then sigma(m) = sigma(2^(p - 1)*(2^p - 1)) = sigma(2^(p - 1))*sigma(2^p - 1) = (2^p - 1)*sigma(2^p - 1), so m is a term.
Thus, A006516(n) and A000396(n), for n >= 1, are terms.

Examples

			sigma(6) = 12 = 3*4 = 3*sigma(3), so 6 is a term.
sigma(12) = 28 = 4*7 = 4*sigma(4), so 12 is a term.
sigma(30) = 72 = 6*12 = 6*sigma(6), so 30 is a term.
sigma(56) = 120 = 8*15 = 8*sigma(8), so 56 is a term.
sigma(117) = 182 = 13*14 = 13*sigma(13), so 117 is a term.
		

Crossrefs

Programs

  • Magma
    s:=func; [n:n in [1..6600]|s(n)];
    
  • Mathematica
    q[n_] := Module[{d = Divisors[n], s}, s = Plus @@ d; AnyTrue[d, #*DivisorSigma[1, #] == s &]]; Select[Range[7000], q] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    isok(k) = my(sk=sigma(k)); fordiv(k, d, if (d*sigma(d) == sk, return(1))); \\ Michel Marcus, Dec 06 2020

A348031 Multiply-perfect numbers k that have a divisor d such that sigma(d)*d = k.

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 23569920, 33550336, 142990848, 1379454720, 8589869056, 66433720320, 137438691328, 153003540480, 403031236608, 14942123276641920, 275502900594021408, 2305843008139952128, 71065075104190073088, 154345556085770649600, 203820700083634254643200, 34384125938411324962897920
Offset: 1

Views

Author

Antti Karttunen, Sep 26 2021

Keywords

Comments

Multiply-perfect numbers (A007691) that are present in A064987.
Note how the first three terms of A005820 are included here, while the next three are in A348032.
At least the even terms of A000396 are all present.

Crossrefs

Intersection of A007691 and A327165.
Cf. A000396, A005820, A064987, A348032 (complement in A007691), A348035 (subsequence).

A348034 Numbers k that have at least one unitary divisor d such that sigma(d)*d is equal to k.

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 117, 120, 132, 182, 306, 380, 496, 552, 672, 775, 870, 992, 1080, 1406, 1680, 1722, 1892, 2016, 2184, 2256, 2793, 2862, 3276, 3540, 3782, 3960, 4556, 4560, 4650, 5112, 5402, 5460, 6320, 6552, 6972, 7392, 8010, 8128, 9180, 9300, 9506, 9801, 10302, 10712, 11556, 11904, 11990, 12882, 16093, 16256
Offset: 1

Views

Author

Antti Karttunen, Sep 26 2021

Keywords

Examples

			120 = 2^3 * 3 * 5 has a unitary divisor 8 for which sigma(8) = 15 = 120/8, thus 120 is included in the sequence.
672 = 2^5 * 3 * 7 has a unitary divisor 21 for which sigma(21) = 32 = 120/21, thus 672 is included in the sequence.
		

Crossrefs

Subsequence of A327165. Even terms of A000396 are all present.
Positions of nonzero terms in A348033.
Cf. also A348035 (multiply-perfect numbers in this sequence).

Programs

  • Mathematica
    q[n_] := DivisorSum[n, 1 &, CoprimeQ[#, n/#] && #*DivisorSigma[1, #] == n &] > 0; Select[Range[16256], q] (* Amiram Eldar, Sep 27 2021 *)
  • PARI
    isA348034(n) = { fordiv(n, d, if(1==gcd(d,n/d)&&n==d*sigma(d),return(1))); (0); };

A348032 Multiply-perfect numbers k that do not have a divisor d such that sigma(d)*d = k.

Original entry on oeis.org

2178540, 45532800, 459818240, 1476304896, 14182439040, 31998395520, 43861478400, 51001180160, 518666803200, 704575228896, 13661860101120, 30823866178560, 181742883469056, 740344994887680, 796928461056000, 6088728021160320, 20158185857531904, 212517062615531520, 622286506811515392, 69357059049509038080, 87934476737668055040
Offset: 1

Views

Author

Antti Karttunen, Sep 26 2021

Keywords

Comments

Numbers k in A007691 for which A327153(k) = 0, that are not in A327165.
Question: Is A323653 a subsequence of this sequence? See also conjecture in A348033.

Crossrefs

Cf. A348031 (complement in A007691).

Programs

Showing 1-8 of 8 results.