A328873 Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.
1, 0, 0, 2, 2, 1, 4, 6, 6
Offset: 1
Examples
Orthogonal pair of Diagonal Latin squares of order 18: 1 5 15 16 17 18 2 14 4 13 3 7 12 10 8 6 11 9 8 2 6 15 16 17 18 1 5 14 4 13 11 9 7 12 10 3 14 9 3 7 15 16 17 2 6 1 5 12 10 8 13 11 4 18 13 1 10 4 8 15 16 3 7 2 6 11 9 14 12 5 18 17 12 14 2 11 5 9 15 4 8 3 7 10 1 13 6 18 17 16 11 13 1 3 12 6 10 5 9 4 8 2 14 7 18 17 16 15 3 12 14 2 4 13 7 6 10 5 9 1 8 18 17 16 15 11 9 10 11 12 13 14 1 15 16 17 18 8 7 6 5 4 3 2 6 7 8 9 10 11 12 18 17 16 15 5 4 3 2 1 14 13 5 6 7 8 9 10 11 16 15 18 17 4 3 2 1 14 13 12 7 8 9 10 11 12 13 17 18 15 16 6 5 4 3 2 1 14 4 15 16 17 18 1 8 13 3 12 2 14 6 11 9 7 5 10 15 16 17 18 14 7 9 12 2 11 1 3 13 5 10 8 6 4 16 17 18 13 6 8 3 11 1 10 14 15 2 12 4 9 7 5 17 18 12 5 7 2 4 10 14 9 13 16 15 1 11 3 8 6 18 11 4 6 1 3 5 9 13 8 12 17 16 15 14 10 2 7 10 3 5 14 2 4 6 8 12 7 11 18 17 16 15 13 9 1 2 4 13 1 3 5 14 7 11 6 10 9 18 17 16 15 12 8 and 1 8 14 13 12 11 3 9 6 5 7 4 15 16 17 18 10 2 5 2 9 1 14 13 12 10 7 6 8 15 16 17 18 11 3 4 15 6 3 10 2 1 14 11 8 7 9 16 17 18 12 4 5 13 16 15 7 4 11 3 2 12 9 8 10 17 18 13 5 6 14 1 17 16 15 8 5 12 4 13 10 9 11 18 14 6 7 1 2 3 18 17 16 15 9 6 13 14 11 10 12 1 7 8 2 3 4 5 2 18 17 16 15 10 7 1 12 11 13 8 9 3 4 5 6 14 14 1 2 3 4 5 6 15 16 17 18 13 12 11 10 9 8 7 4 5 6 7 8 9 10 17 18 15 16 3 2 1 14 13 12 11 13 14 1 2 3 4 5 18 17 16 15 12 11 10 9 8 7 6 3 4 5 6 7 8 9 16 15 18 17 2 1 14 13 12 11 10 7 13 12 11 10 2 1 8 5 4 6 14 3 15 16 17 18 9 12 11 10 9 1 14 8 7 4 3 5 6 13 2 15 16 17 18 10 9 8 14 13 7 18 6 3 2 4 11 5 12 1 15 16 17 8 7 13 12 6 18 17 5 2 1 3 9 10 4 11 14 15 16 6 12 11 5 18 17 16 4 1 14 2 7 8 9 3 10 13 15 11 10 4 18 17 16 15 3 14 13 1 5 6 7 8 2 9 12 9 3 18 17 16 15 11 2 13 12 14 10 4 5 6 7 1 8 so a(18) >= 2.
Links
- R. J. R. Abel, Charles J. Colbourn, and Jeffrey H. Dinitz, Mutually Orthogonal Latin Squares (MOLS) [Note the first author, Julian Abel, has the initials R. J. R. A. - _N. J. A. Sloane_, Nov 05 2020]
- B. Du, New Bounds For Pairwise Orthogonal Diagonal Latin Squares, Australasian Journal of Combinatorics 7 (1993), pp.87-99.
- Natalia Makarova, MODLS of order 15
- Natalia Makarova, Complete MOLS systems
- Natalia Makarova, Orthogonal Diagonal Latin squares
- Natalia Makarova, Mutually Orthogonal Diagonal Latin squares (MODLS) for orders 9 - 20
- Natalia Makarova, MOLS and MODLS of order 12
- E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian), Oct 29 2019.
- Eduard I. Vatutin, On the falsity of Makarova's proof that a(9) = 6 (in Russian).
- Eduard I. Vatutin, About the cliques from orthogonal diagonal Latin squares of order 9, brute force based proof that a(9) = 6 (in Russian).
- E. I. Vatutin, M. O. Manzuk, V. S. Titov, S. E. Kochemazov, A. D. Belyshev, N. N. Nikitina, Orthogonality-based classification of diagonal latin squares of orders 1-8, High-performance computing systems and technologies. Vol. 3. No. 1. 2019. pp. 94-100. (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, O. S. Zaikin, A. D. Belyshev, Cliques properties from diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2019). Tula, 2019. pp. 17-23. (in Russian).
- Eduard I. Vatutin, About the A328873(N)-1 <= A287695(N) inequality between the maximum cardinality of clique and the maximum number of orthogonal normalized mates for one diagonal Latin square (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Wikipedia, Clique problem.
- Index entries for sequences related to Latin squares and rectangles.
Extensions
a(6) corrected by Max Alekseyev and Andrew Howroyd, Nov 08 2019
a(9) added by Eduard I. Vatutin, Feb 02 2021
Comments