cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328873 Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 2, 2, 1, 4, 6, 6
Offset: 1

Views

Author

Eduard I. Vatutin, Oct 29 2019

Keywords

Comments

From Andrew Howroyd, Nov 08 2019: (Start)
A diagonal Latin square of order n is an n X n array with every integer from 0 to n-1 in every row, every column, and both main diagonals.
Of course if even one example exists, then a(n) >= 1.
A274806 gives the number of diagonal Latin squares and A274806(6) is nonzero. This suggests that although it is not possible to have a pair of orthogonal diagonal Latin squares, a(6) should be 1 here. (End)
a(1) = 1 because there is only one (trivial) diagonal Latin square of order 1. It is orthogonal to itself, so if we allow the consideration of multiple copies of the same diagonal Latin square, we get a(1) = infinity instead.
From Eduard I. Vatutin, Mar 27 2021: (Start)
a(n) <= A287695(n) + 1.
a(p) >= A123565(p) = p-3 for all odd prime p due to existence of clique from cyclic MODLS of order p with at least A123565(p) items. It seems that for some orders p clique from cyclic MODLS can be extended by adding none cyclic DLS that are orthogonal to all cyclic DLS. (End)
a(n) <= A001438(n). - Max Alekseyev, Nov 08 2019
a(10) >= 2; a(11) >= 8; a(12) >= 4; a(13) >= 10; a(14) >= 2; a(15) >= 4. - Natalia Makarova, Sep 03 2020; updated May 30 2021
a(16) >= 14, a(17) >= 14, a(18) >= 2, a(19) >= 16, a(20) >= 2. - Natalia Makarova, Jan 08 2021

Examples

			Orthogonal pair of Diagonal Latin squares of order 18:
   1  5 15 16 17 18  2 14  4 13  3  7 12 10  8  6 11  9
   8  2  6 15 16 17 18  1  5 14  4 13 11  9  7 12 10  3
  14  9  3  7 15 16 17  2  6  1  5 12 10  8 13 11  4 18
  13  1 10  4  8 15 16  3  7  2  6 11  9 14 12  5 18 17
  12 14  2 11  5  9 15  4  8  3  7 10  1 13  6 18 17 16
  11 13  1  3 12  6 10  5  9  4  8  2 14  7 18 17 16 15
   3 12 14  2  4 13  7  6 10  5  9  1  8 18 17 16 15 11
   9 10 11 12 13 14  1 15 16 17 18  8  7  6  5  4  3  2
   6  7  8  9 10 11 12 18 17 16 15  5  4  3  2  1 14 13
   5  6  7  8  9 10 11 16 15 18 17  4  3  2  1 14 13 12
   7  8  9 10 11 12 13 17 18 15 16  6  5  4  3  2  1 14
   4 15 16 17 18  1  8 13  3 12  2 14  6 11  9  7  5 10
  15 16 17 18 14  7  9 12  2 11  1  3 13  5 10  8  6  4
  16 17 18 13  6  8  3 11  1 10 14 15  2 12  4  9  7  5
  17 18 12  5  7  2  4 10 14  9 13 16 15  1 11  3  8  6
  18 11  4  6  1  3  5  9 13  8 12 17 16 15 14 10  2  7
  10  3  5 14  2  4  6  8 12  7 11 18 17 16 15 13  9  1
   2  4 13  1  3  5 14  7 11  6 10  9 18 17 16 15 12  8
and
   1  8 14 13 12 11  3  9  6  5  7  4 15 16 17 18 10  2
   5  2  9  1 14 13 12 10  7  6  8 15 16 17 18 11  3  4
  15  6  3 10  2  1 14 11  8  7  9 16 17 18 12  4  5 13
  16 15  7  4 11  3  2 12  9  8 10 17 18 13  5  6 14  1
  17 16 15  8  5 12  4 13 10  9 11 18 14  6  7  1  2  3
  18 17 16 15  9  6 13 14 11 10 12  1  7  8  2  3  4  5
   2 18 17 16 15 10  7  1 12 11 13  8  9  3  4  5  6 14
  14  1  2  3  4  5  6 15 16 17 18 13 12 11 10  9  8  7
   4  5  6  7  8  9 10 17 18 15 16  3  2  1 14 13 12 11
  13 14  1  2  3  4  5 18 17 16 15 12 11 10  9  8  7  6
   3  4  5  6  7  8  9 16 15 18 17  2  1 14 13 12 11 10
   7 13 12 11 10  2  1  8  5  4  6 14  3 15 16 17 18  9
  12 11 10  9  1 14  8  7  4  3  5  6 13  2 15 16 17 18
  10  9  8 14 13  7 18  6  3  2  4 11  5 12  1 15 16 17
   8  7 13 12  6 18 17  5  2  1  3  9 10  4 11 14 15 16
   6 12 11  5 18 17 16  4  1 14  2  7  8  9  3 10 13 15
  11 10  4 18 17 16 15  3 14 13  1  5  6  7  8  2  9 12
   9  3 18 17 16 15 11  2 13 12 14 10  4  5  6  7  1  8
so a(18) >= 2.
		

Crossrefs

Extensions

a(6) corrected by Max Alekseyev and Andrew Howroyd, Nov 08 2019
a(9) added by Eduard I. Vatutin, Feb 02 2021