cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A329614 Smallest prime factor of the number of divisors of A108951(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Differs from A071187 for the first time at n=324, where a(324) = 5, while A071187(324) = 3. The positions of the differences are listed at A329613.

Examples

			324 = 18^2 = 2^2 * 3^4, thus A108951(324) = 2^2 * (2*3)^4 = 2^6 * 3^4 = 5184, which has (6+1)*(4+1) = 7 * 5 = 35 divisors, thus a(324) = A020639(35) = 5.
		

Crossrefs

Programs

  • Mathematica
    Array[FactorInteger[DivisorSigma[0, #]][[1, 1]] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1]));
    A329614(n) = A071187(A108951(n));

Formula

a(n) = A071187(A108951(n)).
a(n) = A020639(A329605(n)).

A071187 Smallest prime factor of number of divisors of n; a(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

a(n) = 2 for nonsquare n. - David A. Corneth, Jul 24 2017

Examples

			324 = 18^2 = 2^2 * 3^4 has (2+1)*(4+1) = 3 * 5 = 15 divisors, thus a(324) = A020639(15) = 3. - _Antti Karttunen_, Nov 18 2019
		

Crossrefs

Differs from A329614 for the first time at n=324, where a(324) = 3, while A329614(324) = 5. A329613 gives the positions of differences.

Programs

  • Mathematica
    a[n_] := FactorInteger[DivisorSigma[0, n]][[1, 1]]; Array[a, 90] (* Jean-François Alcover, Oct 01 2016 *)
  • PARI
    A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1])); \\ Antti Karttunen, Jul 24 2017
    
  • PARI
    first(n) = my(v = vector(n, i, 2)); for(i=1,sqrtint(n), v[i^2] = numdiv(i^2)); v

Formula

a(n) = A020639(A000005(n)).
a(A108951(n)) = A329614(n). - Antti Karttunen, Nov 17 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Jan 15 2024

Extensions

Data section extended up to term a(105) by Antti Karttunen, Nov 17 2019

A329611 Numbers n for which A071187(n^2) <> A329614(n^2).

Original entry on oeis.org

18, 36, 50, 75, 98, 100, 108, 144, 147, 196, 225, 242, 245, 288, 300, 338, 363, 400, 441, 484, 486, 500, 507, 578, 588, 600, 605, 676, 722, 784, 800, 845, 847, 867, 900, 972, 980, 1058, 1083, 1089, 1125, 1152, 1156, 1176, 1183, 1225, 1350, 1372, 1444, 1445, 1452, 1521, 1568, 1587, 1682, 1764, 1800, 1805, 1859, 1922, 1936, 1944
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2019

Keywords

Crossrefs

Formula

a(n) = A000196(A329613(n)).
Showing 1-3 of 3 results.