cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A329613 Numbers k such that A071187(k) <> A329614(k).

Original entry on oeis.org

324, 1296, 2500, 5625, 9604, 10000, 11664, 20736, 21609, 38416, 50625, 58564, 60025, 82944, 90000, 114244, 131769, 160000, 194481, 234256, 236196, 250000, 257049, 334084, 345744, 360000, 366025, 456976, 521284, 614656, 640000, 714025, 717409, 751689, 810000, 944784, 960400, 1119364, 1172889, 1185921, 1265625, 1327104, 1336336
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Comments

All terms are squares; their square roots are in A329611.

Crossrefs

Subsequence of A000290.

Programs

  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1]));
    A329614(n) = A071187(A108951(n));
    k=0; n=0; while(n<2^16, n++; u = n*n; if(A071187(u)!=A329614(u), k++; write("b329613.txt", k, " ", u); print1(u,", ")));
    
  • PARI
    \\ See link

A329611 Numbers n for which A071187(n^2) <> A329614(n^2).

Original entry on oeis.org

18, 36, 50, 75, 98, 100, 108, 144, 147, 196, 225, 242, 245, 288, 300, 338, 363, 400, 441, 484, 486, 500, 507, 578, 588, 600, 605, 676, 722, 784, 800, 845, 847, 867, 900, 972, 980, 1058, 1083, 1089, 1125, 1152, 1156, 1176, 1183, 1225, 1350, 1372, 1444, 1445, 1452, 1521, 1568, 1587, 1682, 1764, 1800, 1805, 1859, 1922, 1936, 1944
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2019

Keywords

Crossrefs

Formula

a(n) = A000196(A329613(n)).

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A329605 Number of divisors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 4, 9, 12, 32, 8, 64, 24, 18, 5, 128, 12, 256, 16, 36, 48, 512, 10, 27, 96, 16, 32, 1024, 24, 2048, 6, 72, 192, 54, 15, 4096, 384, 144, 20, 8192, 48, 16384, 64, 32, 768, 32768, 12, 81, 36, 288, 128, 65536, 20, 108, 40, 576, 1536, 131072, 30, 262144, 3072, 64, 7, 216, 96, 524288, 256, 1152, 72, 1048576, 18, 2097152, 6144, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Cf. A329606 (rgs-transform), A329608, A331284 (ordinal transform).
Cf. A331285 (the position where for the first time some term has occurred n times in this sequence).

Programs

  • Mathematica
    Block[{a}, a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f] > 1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Array[DivisorSigma[0, a@ #] &, 75]] (* Michael De Vlieger, Jan 24 2020, after Jean-François Alcover at A108951 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329605(n) = numdiv(A108951(n));
    
  • PARI
    A329605(n) = if(1==n,1,my(f=factor(n),e=1,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ Antti Karttunen, Jan 14 2020
    
  • PARI
    A329605(n) = if(1==n,1,my(f=factor(n),e=0,d); forstep(i=#f~,1,-1, e += f[i,2]; d = (primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1]))); f[i,1] = (e+1); f[i,2] = d); factorback(f)); \\ Antti Karttunen, Jan 14 2020

Formula

a(n) = A000005(A108951(n)).
a(n) >= A329382(n) >= A329617(n) >= A329378(n).
A020639(a(n)) = A329614(n).
From Antti Karttunen, Jan 14 2020: (Start)
a(A052126(n)) = A329382(n).
a(A002110(n)) = A000142(1+n), for all n >= 0.
a(n) > A056239(n).
a(A329902(n)) = A002183(n).
A000265(a(n)) = A331286(n).
gcd(n,a(n)) = A331283(n).
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > ... > kx, then a(n) = (1+e(k1))^(k1-k2) * (1+e(k1)+e(k2))^(k2-k3) * ... * (1+e(k1)+e(k2)+...+e(kx))^kx.
A000035(a(n)) = A000035(A000005(n)) = A010052(n).
(End)

A071187 Smallest prime factor of number of divisors of n; a(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

a(n) = 2 for nonsquare n. - David A. Corneth, Jul 24 2017

Examples

			324 = 18^2 = 2^2 * 3^4 has (2+1)*(4+1) = 3 * 5 = 15 divisors, thus a(324) = A020639(15) = 3. - _Antti Karttunen_, Nov 18 2019
		

Crossrefs

Differs from A329614 for the first time at n=324, where a(324) = 3, while A329614(324) = 5. A329613 gives the positions of differences.

Programs

  • Mathematica
    a[n_] := FactorInteger[DivisorSigma[0, n]][[1, 1]]; Array[a, 90] (* Jean-François Alcover, Oct 01 2016 *)
  • PARI
    A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1])); \\ Antti Karttunen, Jul 24 2017
    
  • PARI
    first(n) = my(v = vector(n, i, 2)); for(i=1,sqrtint(n), v[i^2] = numdiv(i^2)); v

Formula

a(n) = A020639(A000005(n)).
a(A108951(n)) = A329614(n). - Antti Karttunen, Nov 17 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Jan 15 2024

Extensions

Data section extended up to term a(105) by Antti Karttunen, Nov 17 2019

A329606 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329605(i) = A329605(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 3, 8, 9, 10, 5, 11, 12, 13, 14, 15, 9, 16, 7, 17, 18, 19, 20, 21, 22, 7, 10, 23, 12, 24, 6, 25, 26, 27, 28, 29, 30, 31, 32, 33, 18, 34, 11, 10, 35, 36, 9, 37, 17, 38, 15, 39, 32, 40, 41, 42, 43, 44, 45, 46, 47, 11, 48, 49, 22, 50, 16, 51, 25, 52, 13, 53, 54, 18, 19, 55, 26, 56, 12, 57, 58, 59, 60, 61, 62, 63, 64, 65, 41, 66, 23, 67, 68, 69, 70, 71, 40, 15, 72, 73, 30, 74, 75, 22
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Comments

Restricted growth sequence transform of A329605(n) = A000005(A108951(n)).
For all i, j:
a(i) = a(j) => A329614(i) = A329614(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329605(n) = numdiv(A108951(n));
    v329606 = rgs_transform(vector(up_to, n, A329605(n)));
    A329606(n) = v329606[n];

A329608 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = A329605(n) for all other n, except for odd primes p, f(p) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 8, 3, 13, 14, 15, 3, 16, 17, 18, 13, 19, 3, 10, 3, 5, 20, 21, 22, 23, 3, 24, 25, 26, 3, 15, 3, 27, 19, 28, 3, 8, 29, 14, 30, 31, 3, 26, 32, 33, 34, 35, 3, 36, 3, 37, 27, 38, 39, 18, 3, 40, 41, 20, 3, 11, 3, 42, 15, 43, 44, 21, 3, 10, 45, 46, 3, 47, 48, 49, 50, 51, 3, 33, 52, 53, 54, 55, 56, 57, 3, 32, 31, 58, 3, 24, 3, 59, 18
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j) => A329614(i) = A329614(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329605(n) = numdiv(A108951(n));
    Aux329608(n) = if((n%2)&&isprime(n),0,A329605(n));
    v329608 = rgs_transform(vector(up_to, n, Aux329608(n)));
    A329608(n) = v329608[n];

A329612 a(n) = gcd(d(n), d(A108951(n))), where d(n) gives the number of divisors of n, A000005(n), and A108951 is fully multiplicative with a(prime(i)) = prime(i)# = prime(1) * ... * prime(i).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 4, 3, 4, 2, 2, 2, 4, 2, 5, 2, 6, 2, 2, 4, 4, 2, 2, 3, 4, 4, 2, 2, 8, 2, 6, 4, 4, 2, 3, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 2, 3, 6, 4, 2, 2, 4, 4, 8, 4, 4, 2, 6, 2, 4, 2, 7, 4, 8, 2, 2, 4, 8, 2, 6, 2, 4, 6, 2, 2, 8, 2, 2, 5, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 2, 4, 4, 4, 2, 2, 6, 2, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000005(n),A329605(n)) = gcd(A000005(n),A000005(A108951(n))).
Showing 1-8 of 8 results.