cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330575 a(n) = n + Sum_{d|n and d1; a(1) = 1.

Original entry on oeis.org

1, 3, 4, 8, 6, 14, 8, 20, 14, 20, 12, 42, 14, 26, 26, 48, 18, 54, 20, 58, 34, 38, 24, 116, 32, 44, 46, 74, 30, 104, 32, 112, 50, 56, 50, 176, 38, 62, 58, 156, 42, 132, 44, 106, 96, 74, 48, 304, 58, 112, 74, 122, 54, 190, 74, 196, 82, 92, 60, 346, 62, 98, 124, 256, 86
Offset: 1

Views

Author

Michel Marcus, Dec 18 2019

Keywords

Examples

			a(2) = 2 + a(1) = 2 + 1 = 3, since the only proper divisors of 2 is 1.
a(4) = 4 + a(1) + a(2) = 4 + 1 + 3 = 8, since the proper divisors of 4 are 1 and 2.
a(6) = 6 + a(1) + a(2) + a(3) = 6 + 1 + 3 + 4 = 14, since the proper divisors of 6 are 1, 2 and 3.
		

Crossrefs

Cf. A067824, A074206, A191161, A255242, A378217 (Dirichlet inverse).

Programs

  • Magma
    a:=[1]; for n in [2..65] do Append(~a,(n+&+[a[d]:d in Set(Divisors(n)) diff {n}])); end for; a; // Marius A. Burtea, Dec 18 2019
  • Maple
    f:= proc(n) option remember;
    n + add(procname(d), d = numtheory:-divisors(n) minus {n})
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 19 2019
  • Mathematica
    a[1] = 1; a[n_] := a[n] = n + DivisorSum[n, a[#] &, # < n &]; Array[a, 65] (* Amiram Eldar, Apr 12 2020 *)
  • PARI
    a(n) = if (n==1, 1, n + sumdiv(n, d, if (d
    				

Formula

a(p) = p+1 for p prime.
a(n) = n + A255242(n). - Rémy Sigrist, Dec 18 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 + Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Dec 18 2019
a(n) = Sum_{d|n} A074206(d) * n/d. - David A. Corneth, Apr 13 2020