cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A333953 Recursively superabundant numbers: numbers m such that A330575(m)/m > A330575(k)/k for all k < m.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 240, 288, 360, 480, 576, 720, 1152, 1440, 2160, 2880, 4320, 5760, 8640, 11520, 17280, 25920, 30240, 34560, 51840, 60480, 69120, 103680, 120960, 172800, 181440, 207360, 241920, 345600, 362880, 414720, 483840, 725760
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Comments

Fink (2019) defined this sequence. He asked whether 720 is the largest term that is also superabundant number (A004394).
He noted that up to 10^6 all the recursively superabundant numbers are also recursively highly composite numbers (A333952), except for 181440 (the next term which is not recursively highly composite is 2177280). He asked whether there are a finite number of numbers that are both recursively highly composite and recursively superabundant (in analogy to A166981).
From David A. Corneth, Apr 13 2020: (Start)
The 76 terms in the b-file are products of primorials (Cf. A025487) and 7-smooth numbers (Cf. A002473). All terms are in A025487.
Proof: As A330575(n) = Sum_{d|n} A074206(d) * n/d we have A330575(n) / n = Sum_{d|n} A074206(d)/d which is maximal for some prime signature when n is a product of primorials.
Assuming terms below 10^17 are 13-smooth gives the 213 11-smooth numbers in the Corneth a-file. (End)

Crossrefs

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = n + DivisorSum[n, s[#] &, # < n &]; seq={}; rm = 0; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A378217 Dirichlet inverse of A330575.

Original entry on oeis.org

1, -3, -4, 1, -6, 10, -8, 1, 2, 16, -12, -2, -14, 22, 22, 1, -18, -2, -20, -4, 30, 34, -24, -2, 4, 40, 2, -6, -30, -52, -32, 1, 46, 52, 46, -2, -38, 58, 54, -4, -42, -72, -44, -10, -8, 70, -48, -2, 6, -4, 70, -12, -54, -2, 70, -6, 78, 88, -60, 8, -62, 94, -12, 1, 82, -112, -68, -16, 94, -116, -72, -2, -74, 112, -8, -18, 94
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2024

Keywords

Crossrefs

Cf. A330575.

Programs

  • PARI
    memoA330575 = Map();
    A330575(n) = if(1==n,1,my(v); if(mapisdefined(memoA330575,n,&v), v, v = n + sumdiv(n,d,if(dA330575(d),0)); mapput(memoA330575,n,v); (v)));
    memoA378217 = Map();
    A378217(n) = if(1==n,1,my(v); if(mapisdefined(memoA378217,n,&v), v, v = -sumdiv(n,d,if(dA330575(n/d)*A378217(d),0)); mapput(memoA378217,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA330575(n/d) * a(d).

A333962 a(n) = A330575(A025487(n)).

Original entry on oeis.org

1, 3, 8, 14, 20, 42, 48, 116, 104, 112, 176, 304, 346, 256, 524, 768, 1044, 576, 1472, 1584, 1888, 1056, 2088, 2960, 1280, 3968, 5208, 4544, 3858, 6216, 8032, 2816, 10368, 15960, 10752, 12612, 17712, 10532, 21088, 6144, 22416, 26432, 19128, 24096, 46512, 25088, 38400
Offset: 1

Views

Author

David A. Corneth, Apr 15 2020

Keywords

Comments

These numbers provide candidate record values of A330575(k)/k as k must be a product of primorials for A330575(k)/k to be a record.

Crossrefs

A333954 Numbers k such that A330575(k) = A330575(k+1).

Original entry on oeis.org

14, 16101, 72926, 97101, 2872701, 7610324
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Comments

a(7) > 6*10*8.

Examples

			14 is a term since A330575(14) = A330575(15) = 26.
		

Crossrefs

Cf. A330575.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = n + DivisorSum[n, s[#] &, # < n &]; seq = {}; s1 = s[1]; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq

A323910 Dirichlet inverse of the deficiency of n, A033879.

Original entry on oeis.org

1, -1, -2, 0, -4, 4, -6, 0, -1, 6, -10, 2, -12, 8, 10, 0, -16, 1, -18, 2, 14, 12, -22, 4, -3, 14, -2, 2, -28, -16, -30, 0, 22, 18, 26, 4, -36, 20, 26, 4, -40, -24, -42, 2, 4, 24, -46, 8, -5, -1, 34, 2, -52, 0, 42, 4, 38, 30, -58, 2, -60, 32, 6, 0, 50, -40, -66, 2, 46, -40, -70, 12, -72, 38, 2, 2, 62, -48, -78, 8, -4, 42, -82, -2, 66, 44, 58, 4, -88, 2, 74, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Cf. A033879, A323911, A323912, A359549 (parity of terms).
Sequences that appear in the convolution formulas: A002033, A008683, A023900, A055615, A046692, A067824, A074206, A174725, A191161, A327960, A328722, A330575, A345182, A349341, A346246, A349387.

Programs

  • Mathematica
    b[n_] := 2 n - DivisorSigma[1, n];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v323910 = DirInverse(vector(up_to,n,A033879(n)));
    A323910(n) = v323910[n];

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA033879(n/d) * a(d).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly:
a(n) = Sum_{d|n} A046692(d)*A067824(n/d).
a(n) = Sum_{d|n} A055615(d)*A074206(n/d).
a(n) = Sum_{d|n} A023900(d)*A174725(n/d).
a(n) = Sum_{d|n} A008683(d)*A323912(n/d).
a(n) = Sum_{d|n} A191161(d)*A327960(n/d).
a(n) = Sum_{d|n} A328722(d)*A330575(n/d).
a(n) = Sum_{d|n} A345182(d)*A349341(n/d).
a(n) = Sum_{d|n} A346246(d)*A349387(n/d).
a(n) = Sum_{d|n} A002033(d-1)*A055615(n/d).
(End)

A191161 Hypersigma(n), definition 2: sum of the divisors of n plus the recursive sum of the divisors of the proper divisors.

Original entry on oeis.org

1, 4, 5, 12, 7, 22, 9, 32, 19, 30, 13, 72, 15, 38, 37, 80, 19, 90, 21, 96, 47, 54, 25, 208, 39, 62, 65, 120, 31, 178, 33, 192, 67, 78, 65, 316, 39, 86, 77, 272, 43, 222, 45, 168, 147, 102, 49, 560, 67, 174, 97, 192, 55
Offset: 1

Views

Author

Alonso del Arte, May 26 2011

Keywords

Comments

In wanting to ensure the definition was not arbitrary, I initially thought that 1s had to stop the recursion. But as T. D. Noe showed me, this doesn't have to be the case: the 1s can be included in the recursion.

Crossrefs

Cf. A000203, A191150, A202687, A255242, A378211 (Dirichlet inverse).
Sequences that appear in the convolution formulas: A000010, A000203, A007429, A038040, A060640, A067824, A074206, A174725, A253249, A323910, A323912, A330575.

Programs

  • Mathematica
    hsTD[n_] := hsTD[n] = Module[{d = Divisors[n]}, Total[d] + Total[hsTD /@ Most[d]]]; Table[hsTD[n], {n, 100}] (* From T. D. Noe *)
  • PARI
    a(n)=sumdiv(n,d,if(dCharles R Greathouse IV, Dec 20 2011

Formula

a(n) = sigma(n) + sum_{d | n, d < n} a(d). - Charles R Greathouse IV, Dec 20 2011
From Antti Karttunen, Nov 22 2024: (Start)
Following formulas were conjectured by Sequence Machine:
For n > 1, a(n) = A191150(n) + A074206(n).
a(n) = A330575(n) + A255242(n) = 2*A255242(n) + n = 2*A330575(n) - n.
a(n) = Sum_{d|n} A330575(d).
a(n) = Sum_{d|n} d*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A074206(n/d).
a(n) = Sum_{d|n} A007429(d)*A174725(n/d).
a(n) = Sum_{d|n} A000010(d)*A253249(n/d).
a(n) = Sum_{d|n} A038040(d)*A323912(n/d).
a(n) = Sum_{d|n} A060640(d)*A323910(n/d).
(End)

A255242 Calculate the aliquot parts of a number n and take their sum. Then repeat the process calculating the aliquot parts of all the previous aliquot parts and add their sum to the previous one. Repeat the process until the sum to be added is zero. Sequence lists these sums.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 10, 1, 30, 1, 12, 11, 32, 1, 36, 1, 38, 13, 16, 1, 92, 7, 18, 19, 46, 1, 74, 1, 80, 17, 22, 15, 140, 1, 24, 19, 116, 1, 90, 1, 62, 51, 28, 1, 256, 9, 62, 23, 70, 1, 136, 19, 140, 25, 34, 1, 286, 1, 36, 61, 192, 21, 122, 1, 86, 29, 114
Offset: 1

Views

Author

Paolo P. Lava, Feb 19 2015

Keywords

Comments

a(n) = 1 if n is prime.

Examples

			The aliquot parts of 8 are 1, 2, 4 and their sum is 7.
Now, let us calculate the aliquot parts of 1, 2 and 4:
1 => 0;  2 => 1;  4 => 1, 2.  Their sum is 0 + 1 + 1 + 2 = 4.
Let us calculate the aliquot parts of 1, 1, 2:
1 => 0;  1 = > 0; 2 => 1. Their sum is 1.
We have left 1: 1 => 0.
Finally, 7 + 4 + 1 = 12. Therefore a(8) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,t,v;
    for n from 1 to q do b:=0; a:=sort([op(divisors(n))]); t:=nops(a)-1;
    while add(a[k],k=1..t)>0 do b:=b+add(a[k],k=1..t); v:=[];
    for k from 2 to t do c:=sort([op(divisors(a[k]))]); v:=[op(v),op(c[1..nops(c)-1])]; od;
    a:=v; t:=nops(a); od; print(b); od; end: P(10^3);
  • Mathematica
    f[s_] := Flatten[Most[Divisors[#]] & /@ s]; a[n_] := Total@Flatten[FixedPointList[ f, {n}]] - n; Array[a, 100] (* Amiram Eldar, Apr 06 2019 *)
  • PARI
    ali(n) = setminus(divisors(n), Set(n));
    a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecsum(Vec(list)); \\ Michel Marcus, Jul 15 2023

Formula

a(1) = 0.
a(2^k) = k*2^(k-1) = A001787(k), for k>=1.
a(n^k) = (n^k-2^k)/(n-2), for n odd prime and k>=1.
In particular:
a(3^k) = A001047(k-1);
a(5^k) = A016127(k-1);
a(7^k) = A016130(k-1);
a(11^k) = A016135(k-1).
From Antti Karttunen, Nov 22 2024: (Start)
a(n) = A330575(n) - n.
Also, following formulas were conjectured by Sequence Machine:
a(n) = (A191161(n)-n)/2.
a(n) = Sum_{d|n} A001065(d)*A074206(n/d). [Compare to David A. Corneth's Apr 13 2020 formula for A330575]
a(n) = Sum_{d|n} A051953(d)*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A174726(n/d).
a(n) = Sum_{d|n} A062790(d)*A253249(n/d).
a(n) = Sum_{d|n} A157658(d)*A191161(n/d).
a(n) = Sum_{d|n} A174725(d)*A211779(n/d).
a(n) = Sum_{d|n} A245211(d)*A323910(n/d).
(End)

A323912 Dirichlet inverse of A083254(n), where A083254(n) = 2*phi(n) - n.

Original entry on oeis.org

1, 0, -1, 0, -3, 2, -5, 0, -2, 2, -9, 4, -11, 2, 5, 0, -15, 2, -17, 4, 7, 2, -21, 8, -6, 2, -4, 4, -27, -2, -29, 0, 11, 2, 17, 8, -35, 2, 13, 8, -39, -6, -41, 4, 8, 2, -45, 16, -10, -2, 17, 4, -51, 0, 29, 8, 19, 2, -57, 4, -59, 2, 12, 0, 35, -14, -65, 4, 23, -10, -69, 24, -71, 2, 4, 4, 47, -18, -77, 16, -8, 2, -81, -4, 47, 2, 29, 8, -87, 4
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Sequences that appear in the convolution formulas: A002033, A023900, A046692, A055615, A067824, A074206, A101035, A130054, A174725, A191161, A253249, A323910 (Möbius transform), A328722, A330575.

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA083254(n) = (2*eulerphi(n)-n);
    v323912 = DirInverse(vector(up_to,n,A083254(n)));
    A323912(n) = v323912[n];
    
  • PARI
    A083254(n) = (2*eulerphi(n)-n);
    memoA323912 = Map();
    A323912(n) = if(1==n,1,my(v); if(mapisdefined(memoA323912,n,&v), v, v = -sumdiv(n,d,if(dA083254(n/d)*A323912(d),0)); mapput(memoA323912,n,v); (v))); \\ Antti Karttunen, Nov 22 2024

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA083254(n/d) * a(d).
From Antti Karttunen, Nov 22 2024: (Start)
Following convolution formulas were conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly. The first one is certainly true, because A083254 is Möbius transform of A033879:
a(n) = Sum_{d|n} A323910(d).
a(n) = Sum_{d|n} A023900(d)*A074206(n/d) = Sum_{d|n} A002033(d-1)*A023900(n/d).
a(n) = Sum_{d|n} A055615(d)*A067824(n/d)
a(n) = Sum_{d|n} A046692(d)*A253249(n/d)
a(n) = Sum_{d|n} A130054(d)*A174725(n/d)
a(n) = Sum_{d|n} A101035(d)*A330575(n/d)
a(n) = Sum_{d|n} A191161(d)*A328722(n/d)
(End)

A345139 a(1) = 1; a(n) = a(n-1) + Sum_{d|n, d < n} a(d).

Original entry on oeis.org

1, 2, 3, 6, 7, 13, 14, 23, 27, 37, 38, 63, 64, 81, 92, 124, 125, 171, 172, 225, 243, 284, 285, 396, 404, 471, 502, 606, 607, 762, 763, 919, 961, 1089, 1111, 1397, 1398, 1573, 1641, 1942, 1943, 2300, 2301, 2632, 2762, 3050, 3051, 3682, 3697, 4148, 4277, 4821, 4822, 5541, 5587
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[If[d < n, a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    nmax = 55; A[] = 0; Do[A[x] = (1/(1 - x)) (x + Sum[A[x^k], {k, 2, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = (1/(1 - x)) * (x + A(x^2) + A(x^3) + A(x^4) + ...).

A345140 a(1) = 1; a(n+1) = n + Sum_{d|n} a(d).

Original entry on oeis.org

1, 2, 5, 9, 16, 22, 36, 44, 64, 79, 108, 120, 171, 185, 238, 275, 347, 365, 477, 497, 624, 687, 820, 844, 1071, 1113, 1313, 1410, 1671, 1701, 2094, 2126, 2489, 2636, 3020, 3108, 3732, 3770, 4288, 4504, 5192, 5234, 6151, 6195, 7046, 7415, 8284, 8332, 9702, 9788, 11007, 11411, 12759, 12813, 14639
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = n - 1 + Sum[a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 55}]
    nmax = 55; A[] = 0; Do[A[x] = x (1 + x/(1 - x)^2 + Sum[A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * (1 + x / (1 - x)^2 + A(x) + A(x^2) + A(x^3) + ...).
Showing 1-10 of 10 results.