cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344037 Expansion of e.g.f.: exp(-2*x) / (2 - exp(x)).

Original entry on oeis.org

1, -1, 3, -1, 27, 119, 1203, 11759, 136587, 1771559, 25562403, 405657119, 7022893947, 131714582999, 2660335750803, 57570797728079, 1328913670528107, 32592691757218439, 846383665814342403, 23200396829831840639, 669421949061096575067, 20281206249626017421879
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-2*x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[-2 x]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[HurwitzLerchPhi[1/2, -n, -2]/2, {n, 0, 21}]
    a[n_] := a[n] = (-2)^n + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
  • SageMath
    def A344037_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-2*x)/(2-exp(x)) ).egf_to_ogf().list()
    A344037_list(40) # G. C. Greubel, Jun 11 2024

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * A000670(k).
a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * k! * A008619(k).
a(n) = Sum_{k>=0} (k - 2)^n / 2^(k+1).
a(n) = (-2)^n + Sum_{k=0..n-1} binomial(n,k) * a(k).
a(n) ~ n! / (8 * log(2)^(n+1)). - Vaclav Kotesovec, Aug 15 2021

A292916 a(n) = n! * [x^n] exp(n*x)/(2 - exp(x)).

Original entry on oeis.org

1, 2, 11, 94, 1083, 15666, 272451, 5532206, 128409707, 3352959850, 97259891163, 3102552150006, 107936130271899, 4066743353318114, 164961642651034547, 7167348523420169278, 332081754670735087275, 16343667009638859878298, 851478575825591156040843, 46814697307371602567813126
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A000670.

Crossrefs

Main diagonal of A292915.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    A292916:= func< n | Coefficient(R!(Laplace( Exp(n*x)/(2-Exp(x)) )), n) >;
    [A292916(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
    
  • Maple
    b:= proc(n, k) option remember; k^n +add(
           binomial(n, j)*b(j, k), j=0..n-1)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 27 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/(2 - Exp[x]), {x, 0, n}], {n, 0, 19}]
    Table[HurwitzLerchPhi[1/2, -n, n]/2, {n, 0, 19}]
  • PARI
    a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
    a(n) = 2^n*a000670(n)-sum(k=0, n-1, 2^k*(n-1-k)^n); \\ Seiichi Manyama, Dec 25 2023
    
  • SageMath
    [factorial(n)*( exp(n*x)/(2-exp(x)) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024

Formula

a(n) = A292915(n,n).
a(n) ~ n! * 2^(n-1) / (log(2))^(n+1). - Vaclav Kotesovec, Sep 27 2017
a(n) = 2^n*A000670(n) - Sum_{k=0..n-1} 2^k*(n-1-k)^n. - Seiichi Manyama, Dec 25 2023

A346208 Expansion of e.g.f.: exp(-3*x) / (2 - exp(x)).

Original entry on oeis.org

1, -2, 6, -14, 54, -62, 966, 4786, 71574, 875938, 12810726, 202739986, 3511712694, 65856494338, 1330170266886, 28785391689586, 664456856787414, 16296345814039138, 423191833100881446, 11600198414334789586, 334710974532291679734, 10140603124807778534338
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-3*x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[-3 x]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[HurwitzLerchPhi[1/2, -n, -3]/2, {n, 0, 21}]
    a[n_] := a[n] = (-3)^n + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
  • SageMath
    def A346208_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-3*x)/(2-exp(x)) ).egf_to_ogf().list()
    A346208_list(40) # G. C. Greubel, Jun 11 2024

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * A000670(k).
a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * k! * A002620(k+2).
a(n) = Sum_{k>=0} (k - 3)^n / 2^(k+1).
a(n) = (-3)^n + Sum_{k=0..n-1} binomial(n,k) * a(k).
a(n) ~ n! / (16 * log(2)^(n+1)). - Vaclav Kotesovec, Aug 15 2021
Showing 1-3 of 3 results.