cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A052841 Expansion of e.g.f.: 1/(exp(x)*(2-exp(x))).

Original entry on oeis.org

1, 0, 2, 6, 38, 270, 2342, 23646, 272918, 3543630, 51123782, 811316286, 14045783798, 263429174190, 5320671485222, 115141595488926, 2657827340990678, 65185383514567950, 1692767331628422662, 46400793659664205566, 1338843898122192101558, 40562412499252036940910
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

From Michael Somos, Mar 04 2004: (Start)
Stirling transform of A005359(n)=[0,2,0,24,0,720,...] is a(n)=[0,2,6,38,270,...].
Stirling transform of -(-1)^n*A052657(n-1)=[0,0,2,-6,48,-240,...] is a(n-1)=[0,0,2,6,38,270,...].
Stirling transform of -(-1)^n*A052558(n-1)=[1,-1,4,-12,72,-360,...] is a(n-1)=[1,0,2,6,38,270,...].
Stirling transform of 2*A052591(n)=[2,4,24,96,...] is a(n+1)=[2,6,38,270,...].
(End)
Also the central moments of a Geometric(1/2) random variable (for example the number of coin tosses until the first head). - Svante Janson, Dec 10 2012
Also the number of ordered set partitions of {1..n} with no cyclical adjacencies (successive elements in the same block, where 1 is a successor of n). - Gus Wiseman, Feb 13 2019
Also the number of ordered set partitions of {1..n} with an even number of blocks. - Geoffrey Critzer, Jul 04 2020

Examples

			From _Gus Wiseman_, Feb 13 2019: (Start)
The a(4) = 38 ordered set partitions with no cyclical adjacencies:
  {{1}{2}{3}{4}}  {{1}{24}{3}}  {{13}{24}}
  {{1}{2}{4}{3}}  {{1}{3}{24}}  {{24}{13}}
  {{1}{3}{2}{4}}  {{13}{2}{4}}
  {{1}{3}{4}{2}}  {{13}{4}{2}}
  {{1}{4}{2}{3}}  {{2}{13}{4}}
  {{1}{4}{3}{2}}  {{2}{4}{13}}
  {{2}{1}{3}{4}}  {{24}{1}{3}}
  {{2}{1}{4}{3}}  {{24}{3}{1}}
  {{2}{3}{1}{4}}  {{3}{1}{24}}
  {{2}{3}{4}{1}}  {{3}{24}{1}}
  {{2}{4}{1}{3}}  {{4}{13}{2}}
  {{2}{4}{3}{1}}  {{4}{2}{13}}
  {{3}{1}{2}{4}}
  {{3}{1}{4}{2}}
  {{3}{2}{1}{4}}
  {{3}{2}{4}{1}}
  {{3}{4}{1}{2}}
  {{3}{4}{2}{1}}
  {{4}{1}{2}{3}}
  {{4}{1}{3}{2}}
  {{4}{2}{1}{3}}
  {{4}{2}{3}{1}}
  {{4}{3}{1}{2}}
  {{4}{3}{2}{1}}
(End)
		

Crossrefs

Main diagonal of A122101.
Inverse binomial transform of A000670.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Maple
    spec := [S,{B=Prod(C,C),C=Set(Z,1 <= card),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    P := proc(n,x) option remember; if n = 0 then 1 else
    (n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x); expand(%) fi end:
    A052841 := n -> subs(x=2, P(n,x)):
    seq(A052841(n), n=0..21); # Peter Luschny, Mar 07 2014
    h := n -> add(combinat:-eulerian1(n, k)*2^k, k=0..n):
    a := n -> (h(n)+(-1)^n)/2: seq(a(n), n=0..21); # Peter Luschny, Sep 19 2015
    b := proc(n, m) option remember; if n = 0 then 1 else
         (m - 1)*b(n - 1, m) + (m + 1)*b(n - 1, m + 1) fi end:
    a := n -> b(n, 0): seq(a(n), n = 0..21); # Peter Luschny, Jun 23 2023
  • Mathematica
    a[n_] := If[n == 0, 1, (PolyLog[-n, 1/2]/2 + (-1)^n)/2]; (* or *)
    a[n_] := HurwitzLerchPhi[1/2, -n, -1]/2; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 19 2016, after Vladeta Jovovic *)
    With[{nn=30},CoefficientList[Series[1/(Exp[x](2-Exp[x])),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 08 2019 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(1/(1-y^2),y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(2*m)!*x^(2*m)/prod(k=1,2*m,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
    
  • SageMath
    def A052841_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x)/(2-exp(x)) ).egf_to_ogf().list()
    A052841_list(40) # G. C. Greubel, Jun 11 2024

Formula

O.g.f.: Sum_{n>=0} (2*n)! * x^(2*n) / Product_{k=1..2*n} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n) = (A000670(n) + (-1)^n)/2 = Sum_{k>=0} (k-1)^n/2^(k+1). - Vladeta Jovovic, Feb 02 2003
Also, a(n) = Sum_{k=0..[n/2]} (2k)!*Stirling2(n, 2k). - Ralf Stephan, May 23 2004
a(n) = D^n*(1/(1-x^2)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A000670 and A005649. - Peter Bala, Nov 25 2011
E.g.f.: 1/(2*G(0)), where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k*(k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
a(n) ~ n!/(4*(log(2))^(n+1)). - Vaclav Kotesovec, Aug 10 2013
a(n) = (h(n)+(-1)^n)/2 where h(n) = Sum_{k=0..n} E(n,k)*2^k and E(n,k) the Eulerian numbers A173018 (see also A156365). - Peter Luschny, Sep 19 2015
a(n) = (-1)^n + Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 11 2020

Extensions

Edited by N. J. A. Sloane, Sep 06 2013

A367977 Expansion of e.g.f. exp(-x) / (2 - exp(2*x)).

Original entry on oeis.org

1, 1, 9, 73, 849, 12241, 211929, 4280473, 98806689, 2565862561, 74035143849, 2349822967273, 81361870604529, 3051889548205681, 123282485663042169, 5335770920836028473, 246332487897909570369, 12083010395805261921601, 627555570373369525058889, 34404109751876393769480073
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2023

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!(Laplace( Exp(-x)/(2-Exp(2*x)) ))) // G. C. Greubel, Jun 10 2024
    
  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[-x]/(2 - Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (-1)^n + Sum[Binomial[n, k] 2^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
  • SageMath
    def A367977_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x)/(2-exp(2*x)) ).egf_to_ogf().list()
    A367977_list(50) # G. C. Greubel, Jun 10 2024

Formula

a(n) = Sum_{k>=0} (2*k-1)^n / 2^(k+1).
a(n) = (-1)^n + Sum_{k=1..n} binomial(n,k) * 2^k * a(n-k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 2^k * A000670(k).

A367980 Expansion of e.g.f. exp(-2*x) / (2 - exp(3*x)).

Original entry on oeis.org

1, 1, 19, 217, 3835, 82801, 2150659, 65156617, 2256029515, 87878584801, 3803459964499, 181078683329017, 9404687464288795, 529155742667806801, 32063235363798322339, 2081586179439325213417, 144148514796485770141675, 10606079719868369436964801, 826272285216863547170504179
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2023

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-2*x)/(2-Exp(3*x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    nmax = 18; CoefficientList[Series[Exp[-2 x]/(2 - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (-2)^n + Sum[Binomial[n, k] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • SageMath
    def A367980_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-2*x)/(2-exp(3*x)) ).egf_to_ogf().list()
    A367980_list(40) # G. C. Greubel, Jun 11 2024

Formula

a(n) = Sum_{k>=0} (3*k-2)^n / 2^(k+1).
a(n) = (-2)^n + Sum_{k=1..n} binomial(n,k) * 3^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * 3^k * A000670(k).

A367982 Expansion of e.g.f. exp(-2*x) / (2 - exp(4*x)).

Original entry on oeis.org

1, 2, 36, 584, 13584, 391712, 13563456, 547900544, 25294512384, 1313721631232, 75811987301376, 4812437436975104, 333258221996150784, 25001079178900938752, 2019860245103282896896, 174842541533954981003264, 16143645926877401603702784, 1583744338598987290588086272
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2023

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-2*x)/(2-Exp(4*x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    nmax = 17; CoefficientList[Series[Exp[-2 x]/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (-2)^n + Sum[Binomial[n, k] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
  • SageMath
    def A367982_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-2*x)/(2-exp(4*x)) ).egf_to_ogf().list()
    A367982_list(40) # G. C. Greubel, Jun 11 2024

Formula

a(n) = Sum_{k>=0} (4*k-2)^n / 2^(k+1).
a(n) = (-2)^n + Sum_{k=1..n} binomial(n,k) * 4^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n+k) * A000670(k).

A346208 Expansion of e.g.f.: exp(-3*x) / (2 - exp(x)).

Original entry on oeis.org

1, -2, 6, -14, 54, -62, 966, 4786, 71574, 875938, 12810726, 202739986, 3511712694, 65856494338, 1330170266886, 28785391689586, 664456856787414, 16296345814039138, 423191833100881446, 11600198414334789586, 334710974532291679734, 10140603124807778534338
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-3*x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[-3 x]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[HurwitzLerchPhi[1/2, -n, -3]/2, {n, 0, 21}]
    a[n_] := a[n] = (-3)^n + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
  • SageMath
    def A346208_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-3*x)/(2-exp(x)) ).egf_to_ogf().list()
    A346208_list(40) # G. C. Greubel, Jun 11 2024

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * A000670(k).
a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * k! * A002620(k+2).
a(n) = Sum_{k>=0} (k - 3)^n / 2^(k+1).
a(n) = (-3)^n + Sum_{k=0..n-1} binomial(n,k) * a(k).
a(n) ~ n! / (16 * log(2)^(n+1)). - Vaclav Kotesovec, Aug 15 2021

A341091 Triangle read by rows: Coefficients for calculation of the sum of all the finite differences from order zero to order k. Sum_{n=0..k} T(n, k)*b(n) = b(0) + b(1) + ... + b(k) + (b(1) - b(0)) + ... + (b(k) - b(k-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... .

Original entry on oeis.org

1, 0, 2, 1, -1, 3, 0, 3, -3, 4, 1, -2, 7, -6, 5, 0, 4, -8, 14, -10, 6, 1, -3, 13, -21, 25, -15, 7, 0, 5, -15, 35, -45, 41, -21, 8, 1, -4, 21, -49, 81, -85, 63, -28, 9, 0, 6, -24, 71, -129, 167, -147, 92, -36, 10, 1, -5, 31, -94, 201, -295, 315, -238, 129, -45, 11
Offset: 0

Views

Author

Thomas Scheuerle, Feb 13 2022

Keywords

Comments

If we want to calculate the sum of finite differences for a sequence b(n):
b(0)*T(0, n) + ... + b(n)*T(n, n) = b(0) + b(1) + ... + b(n) + (b(1) - b(0)) + ... + (b(n) - b(n-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... This sum includes the sequence b(n) itself. This defines an invertible linear sequence transformation with a deep connection to Bernoulli numbers and other interesting sequences of rational numbers.
From Thomas Scheuerle, Apr 29 2024: (Start)
These are the coefficients of the polynomials defined by the recurrence: P(k, x) = P(k - 1, x) + (x^2 - x)*P(k - 2, x) + 1, with P(-1, x) = 0 and P(0, x) = 1. This can also be expressed as P(k, x) = Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^2 - x)^(m - 1) = Sum_{n=0..k} T(n, k)*x^(k-n). If we would evaluate P(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1+(t-1)*x)*(1 - t*x)).
We may replace (x^2 - x) by (x^(-2) - x^(-1)) to get the coefficients in reverse order: x^k*Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^(-2) - x^(-1))^(m - 1) = Sum_{n=0..k} T(n, k)*x^n = F(k, x). If we would evaluate F(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1 - (t-1)*x)*(1 - t*x)). (End)

Examples

			Triangle begins with T(n, k):
   n=   0,  1,   2,   3,   4,   5,   6,   7,   8
  k=0   1
  k=1   0,  2
  k=2   1, -1,   3
  k=3   0,  3,  -3,   4
  k=4   1, -2,   7,  -6,   5
  k=5   0,  4,  -8,  14, -10,   6
  k=6   1, -3,  13, -21,  25, -15,   7
  k=7   0,  5, -15,  35, -45,  41, -21,   8
  k=8   1, -4,  21, -49,  81, -85,  63, -28,   9
  ...
		

Crossrefs

Cf. A027642, A164555 (Numerators and denominators of Bernoulli numbers).
Cf. A001008, A002805 (Numerators and denominators of harmonic numbers).
Sequences below will be obtained by evaluation of the associated polynomials:

Programs

  • PARI
    A341091(n, k) = sum(m=n, k,(-1)^(m+n)*binomial(m+1, n))
    
  • PARI
    A341091(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*hypergeom([1,k+3],k+3-n,-1)+(-1/2)^n*(2^(n+1)-1)) \\ Thomas Scheuerle, Apr 29 2024

Formula

b(0)*T(0, m) + b(1)*T(1, m) + ... + b(m)*T(m, m)
= Sum_{j=0..m} Sum_{n=0..m-j} Sum_{k=0..n} (-1)^k*binomial(n, k)*b(j+n-k)
= Sum_{n=0..m} b(n)*Sum_{j=n..m}(-1)^(j+n)*binomial(j+1, n).
T(n, k) = Sum_{m=n..k}(-1)^(m+n)*binomial(m+1, n).
T(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*Hypergeometric2F1(1, k+3, k+3-n, -1)+(-1/2)^n*(2^(n+1) - 1)), where Hypergeometric2F1 is the Gaussian hypergeometric function 2F1 as defined in Mathematica. - Thomas Scheuerle, Apr 29 2024
T(k, k) = A000027(k+1) The positive integers.
|T(k-1, k)| = A000217(k) The triangular numbers.
T(k-2, k) = A004006(k).
|T(k-3, k)| = A051744(k).
T(0, k*2) = 1.
T(0, k*2 + 1) = 0.
T(1, k*2 + 1) = k + 2.
T(1, k*2 + 2) = -(k + 1).
T(n, k) with constant n and variable k, a linear recurrence relation with characteristic polynomial (x-1)*(x+1)^(n+1).
Sum_{n=0..k} T(n, k)*B_n = 1. B_n is the n-th Bernoulli number with B_1 = 1/2. B_n = A164555(n)/A027642(n).
Sum_{n=0..k} T(n, k)*(1 - B_n) = k.
Sum_{n=0..k} T(n, k)*(2*n - 3+3*B_n) = k^2.
Sum_{n=0..k} T(n, k)*A032346(n) = A032346(k+1).
From Thomas Scheuerle, Apr 29 2024: (Start)
Sum_{n=0..k} T(n, k)*A000110(n+1) = A000110(k+2) - 1.
Sum_{n=0..k} T(n, k)*(1/(1+n)) = H(1+floor(k/2)), where H(k) is the harmonic number A001008(k)/A002805(k). (End)
Sum_{n=0..k} T(n, k)*c(n) = c(k). C(k) = {-1, 0, 1/2, 1/2, 1/8, -7/20, ...} this sequence of rational numbers can be defined recursively: c(0) = -1, c(m) = (-c(m-1) + Sum_{k=0..m-1} A130595(m+1, k)*c(k))/m.
c(m) is an eigensequence of this transformation, all eigensequences are c(m) multiplied by any factor.
Sum_{n=0..k} T(n, k)*A000045(n) = 2*(A000045(2*floor((k+1)/2) - 1) - 1). A000045 are the Fibonacci numbers.
Sum_{n=0..k} T(n, k)*A000032(n) = A000032(2*floor(k/2)+2) - 2. A000032 are the Lucas numbers.
Sum_{n=0..k} T(n, k)*A001045(n) = A145766(floor((k+1)/2)). A001045 is the Jacobsthal sequence.
This sequence acting as an operator onto a monomial n^w:
Sum_{n=0..k} T(n, k)*n^w = (1/(w+1))*k^(w+1) + Sum_{v=1..w} ((v+B_v)*(w)_v/v!)*k^(w+1-v) - A052875(w) + O_k(w) (w)_v is the falling factorial. If k > w-1 then O_k(w) = 0. If k <= w-1 then O_k(w) is A084416(w, 2+k), the sequence with the exponential generating function: (e^x-1)^(2+k)/(2-e^x).
From Thomas Scheuerle, Apr 29 2024: (Start)
This sequence acting by its inverse operator onto a monomial k^w:
Sum_{n=0..k} T(n, k)*( Sum_{m=0..k} ((-1)^(1+m+k)*binomial(k, m)*(2^(k-m) - 1)*n^m + A344037(m)*B_n) ) = k^w - A372245(w, k+3), note that A372245(w, k+3) = 0 if k+3 > w. B_n is the n-th Bernoulli number with B_1 = 1/2.
How this sequence will act as an operator onto a Dirichlet series may be developed by the formulas below:
Sum_{n=0..k} T(n, k)*2^n = A000295(k+2).
Sum_{n=0..k} T(n, k)*3^n = A000392(k+3).
Sum_{n=0..k} T(n, k)*4^n = A016208(k).
Sum_{n=0..k} T(n, k)*5^n = A016218(k).
Sum_{n=0..k} T(n, k)*6^n = A016228(k).
Sum_{n=0..k} T(n, k)*7^n = A016241(k).
Sum_{n=0..k} T(n, k)*8^n = A016249(k).
Sum_{n=0..k} T(n, k)*9^n = A016256(k).
Sum_{n=0..k} T(n, k)*10^n = A016261(k).
Sum_{n=0..k} T(n, k)*m^n = m^2*m^k/(m-1) - (m-1)^2*(m-1)^k/(m-2) + 1/((m-1)*(m-2)), for m > 2.
Sum_{n=0..k} T(n, k)*( m*B_n + (m-1)*Sum_{t=1..m} t^n )*(1/m^2) = m^k, for m > 0. B_n is the n-th Bernoulli number with B_1 = 1/2.
Sum_{n=0..k} T(n, k) zeta(-n) = Sum_{j=0..k} (-1)^(1+j)/(2+j) = (-1)^(k+1)*LerchPhi(-1, 1, k+3) - 1 + log(2).
Sum_{n=0..k} T(k - n, k)*2^n = A000975(k+1)
Sum_{n=0..k} T(k - n, k)*3^n = A091002(k+2)
Sum_{n=0..k} T(k - n, k)*4^n = A249997(k). (End)

A372245 Triangular array T(n,k) read by rows: column k is the expansion of e.g.f: exp(-2*x)*(exp(x)-1)^k/(2-exp(x)).

Original entry on oeis.org

1, -1, 1, 3, -1, 2, -1, 7, 0, 6, 27, 11, 26, 12, 24, 119, 151, 120, 150, 120, 120, 1203, 1139, 1202, 1140, 1200, 1080, 720, 11759, 11887, 11760, 11886, 11760, 11760, 10080, 5040, 136587, 136331, 136586, 136332, 136584, 136080, 131040, 100800, 40320, 1771559, 1772071, 1771560, 1772070
Offset: 0

Views

Author

Thomas Scheuerle, Apr 26 2024

Keywords

Examples

			Triangle T(n, k) starts:
[0]  1;
[1] -1,      1;
[2]  3,     -1,      2;
[3] -1,      7,      0,      6;
[4]  27,     11,     26,     12,     24;
[5]  119,    151,    120,    150,    120,    120;
[6]  1203,   1139,   1202,   1140,   1200,   1080,   720;
[7]  11759,  11887,  11760,  11886,  11760,  11760,  10080,  5040;
[8]  136587, 136331, 136586, 136332, 136584, 136080, 131040, 100800, 40320;
		

Crossrefs

Programs

  • PARI
    T(n, k) = sum(m=0, n, ((-1)^((k > 0)+m+n)*binomial(n, m)*(2^(n-m)-(k > 0))*sum(h=max(k-1,0), m, h!*stirling(m, h, 2))))

Formula

T(n, k) = Sum_{m=0..n} ((-1)^(1+m+n)*binomial(k, n)*(2^(k - n) - 1)*A084416(m, k - 1)), for k > 0.
T(n, 0) = A344037(n).
T(n, 1) = A052841(n) - A344037(n).
T(n, 2) = A344037(n) - 2*A052841(n) + A000670(n).
Showing 1-7 of 7 results.