cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A004277 1 together with positive even numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132
Offset: 0

Views

Author

Keywords

Comments

Also number of non-attacking bishops on n X n board. - Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002
Engel expansion of e^(1/2) (see A006784 for definition) [when offset by 1]. - Henry Bottomley, Dec 18 2000
Numbers n such that a 2n-group (i.e., a group of order 2n) has subgroup C_2. - Lekraj Beedassy, Oct 14 2004
Image of 1/(1-2x) under the mapping g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005
Position of n in A113322: A113322(a(n-1)) = n for n>0. - Reinhard Zumkeller, Oct 26 2005
Incrementally largest terms in the continued fraction for e. - Nick Hobson, Jan 11 2007
Conjecturally, the differences of two consecutive primes (without repetition). - Juri-Stepan Gerasimov, Nov 09 2009
Equals (1, 2, 2, 2, ...) convolved with (1, 0, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Mar 03 2010
a(n) is the number of 0-dimensional elements (vertices) in an n-cross polytope. - Patrick J. McNab, Jul 06 2015
Numbers k such that in the symmetric representation of sigma(k) there is no pair bars as its ends (Cf. A237593). - Omar E. Pol, Sep 28 2018
Also, the coordination sequence of the L-lattice (see A332419). - Sean A. Irvine, Jul 29 2020

Crossrefs

INVERT transformation yields A098182 without A098182(0). - R. J. Mathar, Sep 11 2008

Programs

Formula

G.f.: (1+x^2)/(1-x)^2. - Paul Barry, Feb 28 2003
Inverse binomial transform of Cullen numbers A002064. a(n)=2n+0^n. - Paul Barry, Jun 12 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1)*(-1)^k*2^(n-2k). - Paul Barry, Jan 16 2005
Equals binomial transform of [1, 1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Jul 15 2008
E.g.f.: 1+x*sinh(x) (aerated sequence). - Paul Barry, Oct 11 2009
a(n) = 0^n + 2*n = A000007(n) + A005843(n). - Reinhard Zumkeller, Jan 11 2012

Extensions

Corrected by Charles R Greathouse IV, Mar 18 2010

A333139 The number of regions inside a decagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.

Original entry on oeis.org

220, 4220, 25220, 84280, 217800, 456640, 873090, 1501520, 2436020, 3736540, 5523970, 7830800, 10879460, 14665340, 19398660, 25173960, 32203320, 40502280, 50458120, 61995140, 75517160
Offset: 1

Views

Author

Keywords

Comments

The terms are from numeric computation - no formula for a(n) is currently known.

Crossrefs

Cf. A332417 (n-gons), A332418 (vertices), A332419 (edges), A007678, A092867, A331452, A331929.

Extensions

a(6)-a(21) from Lars Blomberg, May 18 2020

A332417 Irregular table read by rows: Take a decagon with all diagonals drawn, as in A333139. Then T(n,k) = number of k-sided polygons in that figure for k >= 3.

Original entry on oeis.org

120, 90, 10, 2040, 1580, 460, 140, 10860, 8570, 4170, 1380, 210, 20, 10, 34360, 30420, 14240, 4020, 1120, 100, 20, 85600, 76920, 38610, 13360, 2650, 550, 110, 176760, 166400, 82560, 24500, 5500, 760, 140, 20, 327550, 320520, 159860, 51610, 10960, 2250, 300, 30, 0, 10
Offset: 1

Views

Author

Keywords

Comments

See the links in A333139 for images of the decagons.

Examples

			A decagon with no other points along its edges, n = 1, contains 120 triangles, 90 quadrilaterals, 10 pentagons and no other n-gons, so the first row is [120, 90, 10]. A decagon with 1 point dividing its edges, n = 2, contains 2040 triangles, 1580 quadrilaterals, 460 pentagons, 140 hexagons and no other n-gons, so the second row is [2040,1580,460,140].
Table begins:
120, 90, 10;
2040,1580,460,140;
10860,8570,4170,1380,210,20,10;
34360,30420,14240,4020,1120,100,20;
85600,76920,38610,13360,2650,550,110;
176760, 166400, 82560, 24500, 5500, 760, 140, 20;
327550, 320520, 159860, 51610, 10960, 2250, 300, 30, 0, 10;
565060, 549520, 277360, 86540, 18960, 3560, 480, 20, 20;
910920, 891290, 447790, 147300, 32180, 5640, 720, 130, 40, 10;
The row sums are A333139.
		

Crossrefs

Cf. A333139 (regions), A332418 (vertices), A332419 (edges), A007678, A092867, A331452, A331929.

Extensions

a(29) and beyond from Lars Blomberg, May 18 2020

A332418 The number of vertices on a decagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.

Original entry on oeis.org

171, 3581, 23651, 80191, 213041, 444251, 862711, 1481141, 2413721, 3701951, 5493891, 7765621, 10833601, 14589491, 19315751, 25064491, 32107771, 40337021, 50328771, 61790891, 75318371
Offset: 1

Views

Author

Keywords

Comments

See the links in A333139 for images of the decagons.

Crossrefs

Cf. A333139 (regions), A332417 (n-gons), A332419 (edges), A330846, A092866, A332599, A007569.

Extensions

a(6)-a(21) from Lars Blomberg, May 18 2020

A335802 a(n) is the number of edges formed by n-secting the angles of a decagon.

Original entry on oeis.org

10, 20, 310, 80, 950, 810, 1970, 390, 3130, 2980, 4750, 3300, 6730, 6450, 9190, 4650, 11570, 11200, 14450, 12040, 17810, 17350, 21650, 12370, 25190, 24660, 29450, 25940, 34210, 33510, 39450, 29090, 43890, 43540, 49810, 45080, 55830, 54950, 62430, 49210, 67610
Offset: 1

Views

Author

Lars Blomberg, Jun 25 2020

Keywords

Crossrefs

Cf. A332419 (n-sected sides, not angles), A335800 (regions), A335801 (vertices), A335803 (ngons).

A367324 Table read by antidiagonals: Place k equally spaced points on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives the number of edges in the resulting planar graph.

Original entry on oeis.org

3, 21, 8, 132, 92, 20, 429, 596, 290, 42, 1272, 1936, 2215, 708, 91, 2826, 6020, 7405, 4020, 1575, 136, 5640, 11088, 21150, 15120, 10962, 2632, 288, 10461, 26260, 43490, 38544, 35812, 17728, 5148, 390, 17094, 42144, 88230, 83136, 96257, 60672, 33291, 7800, 715
Offset: 3

Views

Author

Keywords

Comments

See A367322, A367323 and the cross references for images of the n-gons.

Examples

			The table begins:
3, 21, 132, 429, 1272, 2826, 5640, 10461, 17094, 26847, 41046, 61041, 84051, ...
8, 92, 596, 1936, 6020, 11088, 26260, 42144, 72296, 107832, 183340, 222940, ...
20, 290, 2215, 7405, 21150, 43490, 88230, 151135, 250825, 384360, 578840, ...
42, 708, 4020, 15120, 38544, 83136, 169686, 294678, 475500, 746340, 1140624, ...
91, 1575, 10962, 35812, 96257, 201054, 389991, 668458, 1096508, 1675835, ...
136, 2632, 17728, 60672, 163776, 341920, 673112, 1155144, 1892528, 2905088, ...
288, 5148, 33291, 108252, 283464, 591723, 1133928, 1941786, 3166605, 4837824, ...
390, 7800, 48870, 164470, 430840, 900890, 1735800, 2982660, 4849740, 7438490, ...
715, 12793, 79134, 255552, 660033, 1376870, 2619287, 4482654, 7284904, ...
756, 16512, 99348, 346140, 912960, 1894920, 3685056, 6313164, 10261200, ...
1508, 26806, 160641, 516932, 1322802, 2757339, 5221996, 8932664, 14483183, ...
1722, 35546, 210658, 696682, 1773828, 3718400, 7030464, 12067720, 19517596, ...
2835, 49995, 292590, 939720, 2388825, 4976130, 9394815, 16064970, 26003640, ...
3088, 63456, 370784, 1217664, 3081472, 6455872, 12162640, 20861328, 33700320, ...
4896, 85680, 493017, 1579436, 3995102, 8318525, 15667336, 26783636, ...
4320, 99036, 593784, 1958922, 4978872, 10395450, 19644408, ...
7923, 137693, 781470, 2499792, 6298633, 13109658, 24645983, ...
8360, 167160, 941940, 3068280, 7705420, 16112480, 30238400, ...
12180, 210378, 1180683, 3772692, 9476418, 19717089, ...
12782, 252296, 1400674, 4547884, 11375584, 23776236, ...
17963, 308591, 1716306, 5478232, 13725457, 28550084, ...
16344, 350448, 1981416, 6460080, 16185624, ...
25600, 437700, 2415825, 7704700, 19262750, ...
.
.
.
		

Crossrefs

Cf. A367322 (vertices), A367323 (regions), A274586 (1st row), A331448 (2nd row), A329710 (3rd row), A330845 (4th row), A333112 (5th row), A333110 (6th row), A332429 (7th row), A332419 (8th row), A135565 (1st column).

Formula

T(n,k) = A367322(n,k) + A367323(n,k) - 1 (Euler).
Showing 1-6 of 6 results.