cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332470 a(n) = Sum_{d|n} mu(n/d) * binomial(n+d-2, n-1).

Original entry on oeis.org

1, 1, 5, 16, 69, 226, 923, 3312, 12825, 47896, 184755, 700712, 2704155, 10373455, 40113421, 154946976, 601080389, 2332498482, 9075135299, 35338355380, 137846298360, 538213522254, 2104098963719, 8233142596640, 32247603662625, 126408753954731, 495918514791900
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(n div d) *Binomial(n+d-2,n-1):d in Divisors(n)]:n in [1..30]]; // Marius A. Burtea, Feb 13 2020
    
  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] Binomial[n + # - 2, n - 1] &], {n, 1, 27}]
    Table[SeriesCoefficient[Sum[MoebiusMu[k] x^k/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 1, 27}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(n+d-2, n-1)); \\ Michel Marcus, Feb 14 2020

Formula

a(n) = [x^n] Sum_{k>=1} mu(k) * x^k / (1 - x^k)^n.
a(n) = |{(x_1, x_2, ... , x_{n-1}) : 1 <= x_1 <= x_2 <= ... <= x_n = n, gcd(x_1, x_2, ... , x_n) = 1}|. - Seiichi Manyama, Apr 20 2021