cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A180001 Eventual period of a single cell in rule 110 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 14, 16, 7, 25, 110, 9, 351, 91, 295, 32, 7, 27, 285, 30, 630, 44, 1058, 36, 250, 7, 405, 1652, 1044, 60, 7, 64, 495, 51, 1050, 72, 4403, 76, 390, 60, 7, 630, 1548, 88, 7, 7, 705, 96, 1470, 100, 765, 195, 8109, 7, 825, 7, 2052, 116, 7, 19560, 915
Offset: 1

Views

Author

Ben Branman, Jan 13 2011

Keywords

Comments

The first 21 terms match the most frequent possible outcome (see comment in A332717) with the exception of a(14) which is the second-most frequent. - Hans Havermann, Jun 11 2020

Examples

			For n=4, the evolution of a single cell is:
0001
0011
0111 <--= period starts
1101
0111 <--= again start of period
etc, so a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := -Subtract @@
       Flatten[Map[Position[#, #[[-1]]] &,
         NestWhileList[CellularAutomaton[110],
          Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]]
  • Sage
    def A180001(n):
        def bit(x,i): return (x >> i) & 1
        rulemap = dict((tuple(bit(i,k) for k in reversed(range(3))), bit(110,i)) for i in range(8))
        def neighbours(d, i): return tuple(d[k % n] for k in [i-1..i+1])
        v = [0]*n; v[-1] = 1;
        history = [v]
        while True:
            v2 = [rulemap[neighbours(history[-1], i)] for i in range(n)]
            if v2 in history: return len(history)-history.index(v2)
            history.append(v2) # D. S. McNeil, Jan 15 2011

Extensions

More terms from Alois P. Heinz, Jan 14 2011

A204371 Maximum period of cellular automaton rule 110 in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 14, 16, 7, 25, 110, 18, 351, 91, 295, 32, 578, 81, 285, 240, 630, 462, 1058, 552, 300, 351, 567, 2156, 1044, 1770, 2759, 2368, 1100, 969, 3920, 1584
Offset: 1

Views

Author

Ben Branman, Jan 14 2012

Keywords

Comments

a(n) >= A180001(n), and this sequence agrees with A180001 up to n=11.

Examples

			The 12 cell pattern
000100110111
001101111101
011111000111
110001001101
010011011111
110111110001
011100010011
110100110111
011101111100
110111000100
111101001101
000111011111
001101110001
011111010011
110001110111
010011011100
110111110100
111100011101
000100110111
Has period 18, which is the maximum possible, so a(12)=18
		

Crossrefs

Programs

  • Mathematica
    f[list_] := -Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[110], list, Unequal, All], {0}]]; ma[n_] := Max[Table[f[IntegerDigits[i, 2, n]], {i, 0, 2^n - 1}]]; Table[ma[n], {n, 1, 10}]

Extensions

a(19)-a(36) from Lars Blomberg, Dec 24 2015

A332718 Number of possible eventual periods of cellular automaton rule 110 in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 4, 3, 4, 3, 4, 2, 6, 2, 6, 4, 6, 3, 10, 6
Offset: 1

Views

Author

Hans Havermann, Jun 08 2020

Keywords

Crossrefs

Showing 1-3 of 3 results.