A332882 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j^k_j).
1, 3, 4, 5, 6, 2, 8, 9, 10, 9, 12, 5, 14, 12, 8, 17, 18, 5, 20, 3, 32, 18, 24, 3, 26, 21, 28, 10, 30, 12, 32, 33, 16, 27, 48, 25, 38, 30, 56, 27, 42, 16, 44, 15, 4, 36, 48, 17, 50, 39, 24, 35, 54, 14, 72, 9, 80, 45, 60, 2, 62, 48, 80, 65, 84, 24, 68, 45, 32, 72
Offset: 1
Examples
1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Eric Weisstein's World of Mathematics, Unitary Divisor.
Crossrefs
Programs
-
Maple
a:= n-> numer(mul(1+i[1]^i[2], i=ifactors(n)[2])/n): seq(a(n), n=1..80); # Alois P. Heinz, Feb 28 2020
-
Mathematica
Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator Table[Sum[If[GCD[d, n/d] == 1, 1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Numerator
-
PARI
a(n) = numerator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020
Formula
a(n) = numerator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = numerator of usigma(n)/n.
a(p) = p + 1, where p is prime.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332883(k) = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Nov 21 2022
Comments