cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332882 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 3, 4, 5, 6, 2, 8, 9, 10, 9, 12, 5, 14, 12, 8, 17, 18, 5, 20, 3, 32, 18, 24, 3, 26, 21, 28, 10, 30, 12, 32, 33, 16, 27, 48, 25, 38, 30, 56, 27, 42, 16, 44, 15, 4, 36, 48, 17, 50, 39, 24, 35, 54, 14, 72, 9, 80, 45, 60, 2, 62, 48, 80, 65, 84, 24, 68, 45, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = numerator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = numerator of usigma(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A034448(n) / A323166(n). - Antti Karttunen, Nov 13 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332883(k) = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Nov 21 2022