cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A374141 a(n) is the smallest number which can be represented as the sum of two distinct nonzero hexagonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

7, 384, 4995, 51106, 204805, 483031, 2443431, 4674256, 10476781, 17272531, 25600656, 60765331, 90406956, 206602126, 332808531, 481676406, 303826656, 435211156, 789949306, 1406495106, 2260173906, 2704798281, 3220562556, 4435869181, 5165053156, 5309576106, 9818788281
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(2) = 384 = 6 + 378 = 153 + 231.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(27) from Michael S. Branicky, Jun 29 2024

A333014 Numbers which can written in exactly four ways as a sum of two distinct nonzero pentagonal numbers.

Original entry on oeis.org

13352, 18877, 45397, 49052, 52027, 53727, 62652, 64182, 73152, 74977, 76677, 79327, 80671, 85177, 87972, 88577, 90702, 91652, 93302, 96669, 98827, 101752, 106036, 106822, 109227, 109487, 116117, 118477, 125347, 133267, 135786, 138087, 138802, 140852, 141532, 144747, 145302, 145641, 147274, 148077, 148927
Offset: 1

Views

Author

Olivier Gérard, Mar 05 2020

Keywords

Examples

			13352 = P(52) + P(79) = P(29) + P(90) = P(17) + P(93) = P(10) + P(94), where P(n) is the n-th pentagonal number A000326.
		

Crossrefs

Programs

  • PARI
    is(k) = sum(i=1, sqrt(1+12*k)\6, sqrt(1+24*k+12*i-36*i*i)%6==5) == 4; \\ Jinyuan Wang, Mar 06 2020

A374142 a(n) is the smallest number which can be represented as the sum of two distinct nonzero heptagonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

8, 617, 8726, 255575, 1339801, 2419165, 9402323, 25764500, 35486953, 144568133, 385495261, 735503569, 638279039, 1183071664, 1571634527, 4449717748, 3584182298, 3871587494, 5693954599, 27084640649, 24205505111, 32489035067, 31973745058, 38935021406, 47570693867, 44749048300, 53075499329
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(2) = 617 = 1 + 616 = 148 + 469.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(8)-a(27) from Michael S. Branicky, Jun 29 2024

A374143 a(n) is the smallest number which can be represented as the sum of two distinct nonzero octagonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

9, 1053, 12641, 68141, 365641, 953181, 2830641, 6232341, 13969041, 23211261, 104733741, 84994021, 175873641, 159851141, 538547641, 602713041, 810204416, 1019740041, 1053265741, 1972957241, 3339356041, 5914492241, 6886737541, 6388758241, 8902368041, 7858982841, 4942246941, 18439299341, 26639916441
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(2) = 1053 = 8 + 1045 = 408 + 645.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(29) from Michael S. Branicky, Jun 29 2024

A374144 a(n) is the smallest number which can be represented as the sum of two distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

81, 1105, 205427, 483031, 9402323, 6232341, 79324200, 768459127, 2265692766, 2413112833, 6737406626, 150437989675, 45319359337, 15140186701
Offset: 3

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(3) = 81 = 3 + 78 = 15 + 66 = 36 + 45.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(16) from Michael S. Branicky, Jun 30 2024

A333015 Numbers which can be written in exactly five ways as a sum of two distinct nonzero pentagonal numbers.

Original entry on oeis.org

205427, 210552, 230102, 269712, 333802, 346977, 354537, 384802, 397892, 416677, 420077, 426622, 448552, 470902, 471927, 478302, 509752, 520852, 563772, 566177, 569507, 571377, 575202, 580302, 586102, 590162, 599847, 610052, 616552, 618263, 635552, 646177, 647947
Offset: 1

Views

Author

Olivier Gérard, Mar 05 2020

Keywords

Examples

			205427 = P(234) + P(287) = P(201) + P(311) = P(166) + P(331) = P(56) + P(366) = P(49) + P(367), where P(n) is the n-th pentagonal number (A000326).
		

Crossrefs

Programs

  • PARI
    is(k) = sum(i=1, sqrt(1+12*k)\6, sqrt(1+24*k+12*i-36*i*i)%6==5) == 5; \\ Jinyuan Wang, Mar 06 2020

Extensions

More terms from Jinyuan Wang, Mar 06 2020

A374193 a(n) is the smallest number which can be represented as the sum of two nonzero pentagonal pyramidal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

2, 1471, 269406
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 30 2024

Keywords

Comments

There are no further positive terms <= 10^15. - Michael S. Branicky, Jul 01 2024

Examples

			a(2) = 1471 = 1 + 1470 = 288 + 1183.
		

Crossrefs

Showing 1-7 of 7 results.