A102761
Same as A000179, except that a(0) = 2.
Original entry on oeis.org
2, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
-
{ A102761(n) = subst( serlaplace( 2*polchebyshev(n, 1, (x-2)/2)), x, 1); } \\ Max Alekseyev, Mar 06 2018
Changed a(0)=2 (making the sequence more consistent with existing formulae) by
Max Alekseyev, Mar 06 2018
A000270
For n >= 2, a(n) = b(n+1)+b(n)+b(n-1), where the b(i) are the ménage numbers A000179; a(0)=a(1)=1.
Original entry on oeis.org
1, 1, 0, 3, 16, 95, 672, 5397, 48704, 487917, 5373920, 64547175, 839703696, 11762247419, 176509466560, 2825125339305, 48040633506048, 864932233294681, 16436901752820288, 328791893988472843, 6905593482159150480, 151941269284478380119, 3495011687269591273312
Offset: 0
From _William P. Orrick_, Aug 07 2020: (Start)
There are no permutations of 123 discordant with both 123 and 132, so a(2) = 0; the permutations of 1234 discordant with both 1234 and 1342 are 2413, 3421, and 4123, so a(3) = 3.
Touchard (1953), p. 117, writes a(4) + a(0) for the number of permutations discordant with 12345 and 13254. There are 16 = 4*2*2 such permutations, obtained by letting (x,y) be one of (2,3), (3,2), (4,5), (5,4), then placing x in position 1, and finally, if (x,y) is (2,3) or (3,2), placing 4, 5 (in either order) in positions 2, 3 while placing 1, y (in either order) in positions 4, 5, or, if (x,y) is (4,5) or (5,4), placing 1, y (in either order) in positions 2, 3 while placing 2, 3 (in either order) in positions 4, 5. Hence Touchard's expression gives the correct result, assuming a(0) = 0.
(End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Touchard, Permutations discordant with two given permutations, Scripta Math., 19 (1953), 109-119.
-
a:= n-> coeftayl(1+(1-x)/(1+x)*add(k*k!*(x/(1+x)^2)^k, k=0..n), x=0, n):
seq(a(n), n=0..25); # Alois P. Heinz, Sep 24 2008
# second Maple program:
A000270 := proc(n) if n <= 1 then 1 else n * add((-1)^(n-s)*s!*binomial(s+n-1, 2*s-1), s=1..n) fi end; seq(A000270(n), n=0..30); # Mark van Hoeij, May 12 2013
-
max = 20; f[x_] := 1+(1-x)/(1+x)*Sum[ n*n!*(x/(1+x)^2)^n, {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 09 2011, after Vladeta Jovovic *)
Entry revised by
N. J. A. Sloane, Jul 23 2020. Thanks to
William P. Orrick for suggesting that this sequence needed a better definition. The initial terms a(0)=a(1)=1 have been preserved in order to agree with the sequence in Touchard's 1953 paper.
A331007
Number of derangements of a set of n elements where 2 specific elements cannot appear in each other's positions.
Original entry on oeis.org
1, 0, 0, 0, 4, 24, 168, 1280, 10860, 101976, 1053136, 11881152, 145510740, 1923678680, 27313300344, 414633520704, 6702860119228, 114974897260440, 2085904412222880, 39909278145297536, 803157866412577956, 16960527261105495192, 375011130469825988680, 8664636644578485432960
Offset: 0
For a group of 4 friends, the number of possible permutations of their names in a secret Santa draw in which neither friend number 1 nor friend number 2 can draw the other one's name is 4. The permutations are 3412, 3421, 4312, 4321.
For a group of 6 friends, the number of possible permutations of their names in a secret Santa draw in which neither friend number 1 nor friend number 2 can draw the other one's name is 168.
-
f:=gfun:-rectoproc({(n-4)*a(n) = (n-2)*(n-3)*(a(n-1) + a(n-2)), a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=4}, a(n), remember): map(f,[$0..23]); # Georg Fischer, Jun 12 2021
-
f[n_] := If[n < 0, 0, Subfactorial[n]];
a[n_] := f[n] + f[n-2] - 2 Sum[Binomial[n-2, k]*f[k]*(n-k-2)!, {k, 0, n-2}];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 27 2022, after Andrew Howroyd *)
-
a(n) = {if(n<=1, n==0, b(n) + b(n-2) - 2*sum(k=0, n-2, binomial(n-2,k)*b(k)*(n-k-2)!))} \\ Andrew Howroyd, Jan 07 2020
-
def permutation(n):
permutations = [[]]
for i in range(1,n + 1):
new_permutations = []
for p in permutations:
for j in range(0, len(p) + 1):
n = p.copy()
n.insert(j, i)
new_permutations.append(n)
permutations = new_permutations
return permutations
def check_secret_santa(permutations):
num_valid = 0
for perm in permutations:
valid = True
for i, p in enumerate(perm):
if i == p - 1 or (i == 0 and p == 2) or (i == 1 and p == 1):
valid = False
break
if valid:
num_valid += 1
return num_valid
Showing 1-3 of 3 results.
Comments