A335747 Number of ways to tile vertically-fault-free 3 X n strip with squares and dominoes.
1, 3, 13, 26, 66, 154, 380, 904, 2204, 5286, 12818, 30854, 74636, 179948, 434820, 1049122, 2533818, 6115538, 14766868, 35646080, 86064196, 207766110, 501609946, 1210964110, 2923573588, 7058053972, 17039774268
Offset: 0
Keywords
Examples
a(2) = 13 thanks to these thirteen vertically-fault-free tilings of a 3 X 2 strip: ._ _ _ _ _ _ _ _ _ _ _ _ _ _ |_ _| |_|_| |_|_| |_ _| |_|_| |_ _| |_ _| |_|_| |_ _| |_|_| |_ _| |_ _| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_| |_ _| |_ _| |_ _| ._ _ _ _ _ _ _ _ _ _ _ _ |_ _| |_ _| |_ _| | |_| |_| | | | | | |_| |_| | | | | |_|_| |_|_| |_|_| |_|_| |_|_| |_|_| |_ _| |_ _| |_ _|
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-1,-1).
Crossrefs
Programs
-
Magma
I:=[26, 66, 154, 380]; [1,3,13] cat [n le 4 select I[n] else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
-
Mathematica
CoefficientList[Series[(1+2x+6x^2+2x^3-8x^4+x^6)/((1+x-x^2)(1-2x-x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Jul 03 2020 *) LinearRecurrence[{1,4,-1,-1}, {1,3,13,26,66,154,380}, 40] (* G. C. Greubel, Jan 15 2022 *)
-
Sage
def P(n): return lucas_number1(n,2,-1) def A335747(n): return (1/3)*(-9*bool(n==0) - 3*bool(n==1) + 3*bool(n==2) + 2*(3*P(n+1) + 2*P(n-1)) + 2*(-1)^n*fibonacci(n-1)) [A335747(n) for n in (0..40)] # G. C. Greubel, Jan 15 2022
Formula
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4) for n >= 7.
G.f.: (1 + 2*x + 6*x^2 + 2*x^3 - 8*x^4 + x^6) / ((1 + x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Jun 21 2020
a(n) = (1/3)*(-9*[n=0] - 3*[n=1] + 3*[n=2] + 2*(3*A000129(n+1) + 2*A000129(n-1)) + 2*(-1)^n*Fibonacci(n-1)). - G. C. Greubel, Jan 15 2022
Comments