cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335747 Number of ways to tile vertically-fault-free 3 X n strip with squares and dominoes.

Original entry on oeis.org

1, 3, 13, 26, 66, 154, 380, 904, 2204, 5286, 12818, 30854, 74636, 179948, 434820, 1049122, 2533818, 6115538, 14766868, 35646080, 86064196, 207766110, 501609946, 1210964110, 2923573588, 7058053972, 17039774268
Offset: 0

Views

Author

Keywords

Comments

By "vertically-fault-free" we mean that the tilings of the 3 X n strip do not split along any interior vertical line. Here are two of the 66 possible vertically-fault-free tilings of a 3 X 4 strip with squares and dominoes:
. _ _
| |_ | | _|_| |
|| _| | | | |_|
|| _|| ||_| |

Examples

			a(2) = 13 thanks to these thirteen vertically-fault-free tilings of a 3 X 2 strip:
._ _     _ _     _ _     _ _     _ _     _ _     _ _
|_ _|   |_|_|   |_|_|   |_ _|   |_|_|   |_ _|   |_ _|
|_|_|   |_ _|   |_|_|   |_ _|   |_ _|   |_|_|   |_ _|
|_|_|   |_|_|   |_ _|   |_|_|   |_ _|   |_ _|   |_ _|
._ _     _ _     _ _     _ _     _ _     _ _
|_ _|   |_ _|   |_ _|   | |_|   |_| |   | | |
| |_|   |_| |   | | |   |_|_|   |_|_|   |_|_|
|_|_|   |_|_|   |_|_|   |_ _|   |_ _|   |_ _|
		

Crossrefs

Cf. A033506 (which gives all tilings of 3 X n strip), A112577, A134438, A291227.

Programs

  • Magma
    I:=[26, 66, 154, 380]; [1,3,13] cat [n le 4 select I[n] else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
    
  • Mathematica
    CoefficientList[Series[(1+2x+6x^2+2x^3-8x^4+x^6)/((1+x-x^2)(1-2x-x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Jul 03 2020 *)
    LinearRecurrence[{1,4,-1,-1}, {1,3,13,26,66,154,380}, 40] (* G. C. Greubel, Jan 15 2022 *)
  • Sage
    def P(n): return lucas_number1(n,2,-1)
    def A335747(n): return (1/3)*(-9*bool(n==0) - 3*bool(n==1) + 3*bool(n==2) + 2*(3*P(n+1) + 2*P(n-1)) + 2*(-1)^n*fibonacci(n-1))
    [A335747(n) for n in (0..40)] # G. C. Greubel, Jan 15 2022

Formula

a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4) for n >= 7.
a(n) = 2*A291227(n) - 8*A112577(n-2) + 2*A112577(n-4) for n >= 4.
a(n) = (2/3)*(A221174(n+1) + (-1)^n*A000045(n-1)) for n >= 3. - Greg Dresden, Jul 03 2020
G.f.: (1 + 2*x + 6*x^2 + 2*x^3 - 8*x^4 + x^6) / ((1 + x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Jun 21 2020
a(n) = (1/3)*(-9*[n=0] - 3*[n=1] + 3*[n=2] + 2*(3*A000129(n+1) + 2*A000129(n-1)) + 2*(-1)^n*Fibonacci(n-1)). - G. C. Greubel, Jan 15 2022