cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336204 a(n) = Sum_{k=0..n} 2^k * binomial(n,k)^n.

Original entry on oeis.org

1, 3, 13, 171, 7761, 1256283, 741398869, 1609036666443, 13118066779885825, 399221556627301207443, 46476897754761801245056293, 20377119057713827002258336842283, 34592895120825704155462768381947657489, 222457046333769635263635086646525921070978443
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2020

Keywords

Crossrefs

Main diagonal of A336203.

Programs

  • Magma
    [(&+[2^j*Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
    
  • Mathematica
    Table[Sum[2^k*Binomial[n, k]^n, {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 12 2020 *)
  • PARI
    {a(n) = sum(k=0, n, 2^k*binomial(n, k)^n)};
    
  • SageMath
    def A336204(n): return sum(2^k*binomial(n,k)^n for k in (0..n))
    [A336204(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022

Formula

a(n) ~ c * 2^(n*(n+1)) / (Pi*n)^(n/2), where c = exp(-1/4) * Sum_{k = -oo..oo} 2^k * exp(-2*k^2) = 1.0434092897163574491113380912895917... if n is even and c = exp(-1/4) * Sum_{k = -oo..oo} 2^(k + 1/2) * exp(-2*(k + 1/2)^2) = 1.029587234777114329090639723058125257... if n is odd. - Vaclav Kotesovec, Jul 12 2020

A336214 a(n) = Sum_{k=0..n} k^n * binomial(n,k)^n, with a(0)=1.

Original entry on oeis.org

1, 1, 8, 270, 41984, 30706250, 94770093312, 1336016204844832, 76829717664330940416, 19838680914222199482800274, 20521247958509575370600000000000, 94285013320530947020636486516362047300, 1715947732437668013396578734960052732361179136
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[k^n*Binomial[n, k]^n, {k, 1, n}], {n, 1, 15}]}]
  • PARI
    a(n) = if (n==0, 1, sum(k=0, n, k^n * binomial(n,k)^n)); \\ Michel Marcus, Jul 13 2020

Formula

a(n) ~ c * exp(-1/4) * 2^(n^2 - n/2) * n^(n/2) / Pi^(n/2), where c = Sum_{k = -infinity..infinity} exp(-2*k*(k-1)) = exp(1/2) * sqrt(Pi/2) * EllipticTheta(3, -Pi/2, exp(-Pi^2/2)) = 2.036643566277677716389243890291939003151565... if n is even and c = Sum_{k = -infinity..infinity} exp(-2*k^2 + 1/2) = exp(1/2) * EllipticTheta(3, 0, exp(-2)) = 2.096087809957308346119920713317351288828811... if n is odd.
a(n) = n^n * A328812(n-1) for n > 0. - Seiichi Manyama, Jul 15 2020

A336213 a(n) = Sum_{k=0..n} k^k * binomial(n,k)^n, with a(0)=1.

Original entry on oeis.org

1, 2, 9, 163, 12609, 3906251, 4835455813, 23882051929709, 470073929716006913, 36867039626275056203923, 11562789460238169439667262501, 14393917436542502296957220221339601, 72060131612303615870363237649174605005057, 1424448870088911493303605765206905153730451241313
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[k^k * Binomial[n, k]^n, {k, 1, n}], {n, 0, 15}]
  • PARI
    a(n) = if (n==0, 1, sum(k=0, n, k^k * binomial(n,k)^n)); \\ Michel Marcus, Jul 13 2020

Formula

Let f(n) = exp(-1/4) * QPochhammer(exp(-4)) * 2^(n^2 - 1/4) * exp((3*log(n)^2 + 3*log(2)^2 + Pi^2 - 1)/24) * n^((1 - log(2))/4) / Pi^(n/2). For sufficiently large n 0.985... < a(n)/f(n) < 1.015...
a(n) ~ exp(-1/4) * QPochhammer(exp(-4)) * QPochhammer(-n*exp(-1)/2, exp(-4)) * 2^(n^2) / Pi^(n/2) if n is even and a(n) ~ exp(-1/4) * QPochhammer(exp(-4)) * QPochhammer(-n*exp(-3)/2, exp(-4)) * sqrt(n) * 2^(n^2 - 1/2) / Pi^(n/2) if n is odd.
Showing 1-3 of 3 results.