cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217284 a(n) = Sum_{k=0..n} (n!/k!)^3.

Original entry on oeis.org

1, 2, 17, 460, 29441, 3680126, 794907217, 272653175432, 139598425821185, 101767252423643866, 101767252423643866001, 135452212975869985647332, 234061424022303335198589697, 514232948577000427431301564310, 1411055210895289172871491492466641, 4762311336771600958441283787074913376
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n!/k!)^3, {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (n!/k!)^3); \\ Seiichi Manyama, May 02 2021

Formula

Recurrence: a(n) = (n+1)*(n^2-n+1)*a(n-1)-(n-1)^3*a(n-2).
a(n) ~ 2.12970254898330641813452361... * (n!)^3 = A271574 * (n!)^3.
a(n) = n^3 * a(n-1) + 1. - Seiichi Manyama, May 02 2021

A343928 a(n) = Sum_{k=0..n} (k!)^n * binomial(n,k).

Original entry on oeis.org

1, 2, 7, 244, 337061, 24923091206, 139331988275478727, 82607113404338664216300296, 6984967577834038055008791270166057993, 109110690950275218023122492287310115968068596613130, 395940866518366059877297056617763923418318903997411043997258716171
Offset: 0

Views

Author

Seiichi Manyama, May 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k!)^n * Binomial[n, k], {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, May 04 2021 *)
  • PARI
    a(n) = sum(k=0, n, k!^n*binomial(n, k));

Formula

a(n) = [x^n] Sum_{k>=0} (k!)^n * x^k/(1 - x)^(k+1).
a(n) = n! * [x^n] exp(x) * Sum_{k>=0} (k!)^(n-1) * x^k.

A343863 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
Offset: 0

Views

Author

Seiichi Manyama, May 02 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,       1,         1,           1, ...
  2,   2,     2,       2,         2,           2, ...
  3,   5,     9,      17,        33,          65, ...
  4,  16,    82,     460,      2674,       15796, ...
  5,  65,  1313,   29441,    684545,    16175105, ...
  6, 326, 32826, 3680126, 427840626, 50547203126, ...
		

Crossrefs

Columns 0..3 give A000027(n+1), A000522, A006040, A217284.
Main diagonal gives A336247.
Cf. A291556.

Programs

  • Mathematica
    T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, (n!/j!)^k);

Formula

T(0,k) = 1 and T(n,k) = n^k * T(n-1,k) + 1 for n > 0.

A336248 a(n) = (n!)^n * Sum_{k=0..n} (-1)^k / (k!)^n.

Original entry on oeis.org

1, 0, 1, 26, 20481, 774403124, 2173797080953345, 645067515585218711490294, 27280857986486289638369834192338945, 213095986405176211170558965907644717041658073416, 386654453940903446694477049963665295677203885863801760000000001
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n Sum[(-1)^k/(k!)^n, {k, 0, n}], {n, 0, 10}]
  • PARI
    a(n) = (n!)^n * sum(k=0, n, (-1)^k / (k!)^n); \\ Michel Marcus, Jul 14 2020
Showing 1-4 of 4 results.