A336247
a(n) = (n!)^n * Sum_{k=0..n} 1 / (k!)^n.
Original entry on oeis.org
1, 2, 9, 460, 684545, 50547203126, 280807908057046657, 165858480204085842350156792, 13997217669604247492958380810030809089, 218434494471443385260764665498960241287478619115850, 792268399795067334328715213043856435592857850955707257780000000001
Offset: 0
-
Table[(n!)^n Sum[1/(k!)^n, {k, 0, n}], {n, 0, 10}]
-
a(n) = (n!)^n * sum(k=0, n, 1/(k!)^n); \\ Michel Marcus, Jul 14 2020
A368769
a(n) = (n!)^3 * Sum_{k=1..n} 1/(k!)^3.
Original entry on oeis.org
0, 1, 9, 244, 15617, 1952126, 421659217, 144629111432, 74050105053185, 53982526583771866, 53982526583771866001, 71850742883000353647332, 124158083701824611102589697, 272775309892908670592389564310, 748495450346141392105516964466641
Offset: 0
-
Table[(n!)^3 Sum[1/(k!)^3,{k,n}],{n,0,20}] (* Harvey P. Dale, May 11 2025 *)
-
a(n) = n!^3*sum(k=1, n, 1/k!^3);
A368772
a(n) = (n!)^3 * Sum_{k=0..n} (k/k!)^3.
Original entry on oeis.org
0, 1, 16, 459, 29440, 3680125, 794907216, 272653175431, 139598425821184, 101767252423643865, 101767252423643866000, 135452212975869985647331, 234061424022303335198589696, 514232948577000427431301564309, 1411055210895289172871491492466640
Offset: 0
A368775
a(n) = (n+1) * (n!)^3 * Sum_{k=0..n} 1/((k+1) * (k!)^3).
Original entry on oeis.org
1, 3, 37, 1333, 106641, 15996151, 4031030053, 1580163780777, 910174337727553, 737241213559317931, 810965334915249724101, 1177521666296942599394653, 2204320559307876546066790417, 5215422443322435907994026126623
Offset: 0
A368776
a(n) = (n+1)^2 * (n!)^3 * Sum_{k=0..n} 1/((k+1)^2 * (k!)^3).
Original entry on oeis.org
1, 5, 91, 4369, 436901, 78642181, 23120801215, 10358118944321, 6712061075920009, 6040854968328008101, 7309434511676889802211, 11578144266496193446702225, 23480476572454280309912112301, 59828254306613506229656062142949
Offset: 0
A343863
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
3, 5, 9, 17, 33, 65, ...
4, 16, 82, 460, 2674, 15796, ...
5, 65, 1313, 29441, 684545, 16175105, ...
6, 326, 32826, 3680126, 427840626, 50547203126, ...
-
T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
T(n, k) = sum(j=0, n, (n!/j!)^k);
A228513
a(n) = Sum_{k=0..n} 2^k*(n!/k!)^2.
Original entry on oeis.org
1, 3, 16, 152, 2448, 61232, 2204416, 108016512, 6913057024, 559957619456, 55995761946624, 6775487195543552, 975670156158275584, 164888256390748581888, 32318098252586722066432, 7271572106832012464979968, 1861522459348995191034937344, 537979990751859610209097023488
Offset: 0
-
Table[(n!)^2*Sum[2^j/(j!)^2, {j, 0, n}], {n, 0, 20}]
Total/@Table[2^k (n!/k!)^2,{n,0,20},{k,0,n}] (* Harvey P. Dale, Jun 10 2018 *)
A295610
a(n) = Sum_{k=0..n} (n!/(n - k)!)^k.
Original entry on oeis.org
1, 2, 7, 256, 345749, 25090776406, 139507578065088907, 82622801516492599819822772, 6985137485409222182920705065038896201, 109110989095384931538566720095053550173384985449034, 395940975233113726268241745444050219538058574725338743701918216111
Offset: 0
-
Table[Sum[(n!/(n - k)!)^k, {k, 0, n}], {n, 0, 10}]
Table[Sum[(Gamma[n + 1]/Gamma[k + 1])^(n - k), {k, 0, n}], {n, 0, 10}]
Table[Sum[(Binomial[n, k] k!)^k, {k, 0, n}], {n, 0, 10}]
-
a(n) = sum(k=0, n, (n!/(n - k)!)^k); \\ Michel Marcus, Nov 25 2017
A368852
a(n) = (n!)^3 * Sum_{k=0..n} (-1)^k/(k!)^3.
Original entry on oeis.org
1, 0, 1, 26, 1665, 208124, 44954785, 15419491254, 7894779522049, 5755294271573720, 5755294271573720001, 7660296675464621321330, 13236992655202865643258241, 29081672863480695818238355476, 79800110337391029325246047426145
Offset: 0
Showing 1-9 of 9 results.
Comments