cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A336247 a(n) = (n!)^n * Sum_{k=0..n} 1 / (k!)^n.

Original entry on oeis.org

1, 2, 9, 460, 684545, 50547203126, 280807908057046657, 165858480204085842350156792, 13997217669604247492958380810030809089, 218434494471443385260764665498960241287478619115850, 792268399795067334328715213043856435592857850955707257780000000001
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 14 2020

Keywords

Crossrefs

Main diagonal of A343863.

Programs

  • Mathematica
    Table[(n!)^n Sum[1/(k!)^n, {k, 0, n}], {n, 0, 10}]
  • PARI
    a(n) = (n!)^n * sum(k=0, n, 1/(k!)^n); \\ Michel Marcus, Jul 14 2020

A368769 a(n) = (n!)^3 * Sum_{k=1..n} 1/(k!)^3.

Original entry on oeis.org

0, 1, 9, 244, 15617, 1952126, 421659217, 144629111432, 74050105053185, 53982526583771866, 53982526583771866001, 71850742883000353647332, 124158083701824611102589697, 272775309892908670592389564310, 748495450346141392105516964466641
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^3 Sum[1/(k!)^3,{k,n}],{n,0,20}] (* Harvey P. Dale, May 11 2025 *)
  • PARI
    a(n) = n!^3*sum(k=1, n, 1/k!^3);

Formula

a(0) = 0; a(n) = n^3 * a(n-1) + 1.
a(n) = A217284(n) - (n!)^3.
a(n) ~ (A271574 - 1) * (n!)^3. - Vaclav Kotesovec, Jan 05 2024

A368772 a(n) = (n!)^3 * Sum_{k=0..n} (k/k!)^3.

Original entry on oeis.org

0, 1, 16, 459, 29440, 3680125, 794907216, 272653175431, 139598425821184, 101767252423643865, 101767252423643866000, 135452212975869985647331, 234061424022303335198589696, 514232948577000427431301564309, 1411055210895289172871491492466640
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!^3*sum(k=0, n, (k/k!)^3);

Formula

a(0) = 0; a(n) = n^3 * a(n-1) + n^3.
a(n) = n^3 * A217284(n-1) for n > 0.
a(n) = Sum_{k=1..n} (k!*binomial(n,k))^3. - Ridouane Oudra, Jun 14 2025

A368775 a(n) = (n+1) * (n!)^3 * Sum_{k=0..n} 1/((k+1) * (k!)^3).

Original entry on oeis.org

1, 3, 37, 1333, 106641, 15996151, 4031030053, 1580163780777, 910174337727553, 737241213559317931, 810965334915249724101, 1177521666296942599394653, 2204320559307876546066790417, 5215422443322435907994026126623
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (n+1)*n!^3*sum(k=0, n, 1/((k+1)*k!^3));

Formula

a(n) = (n+1) * n^2 * a(n-1) + 1.

A368776 a(n) = (n+1)^2 * (n!)^3 * Sum_{k=0..n} 1/((k+1)^2 * (k!)^3).

Original entry on oeis.org

1, 5, 91, 4369, 436901, 78642181, 23120801215, 10358118944321, 6712061075920009, 6040854968328008101, 7309434511676889802211, 11578144266496193446702225, 23480476572454280309912112301, 59828254306613506229656062142949
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (n+1)^2*n!^3*sum(k=0, n, 1/((k+1)^2*k!^3));

Formula

a(n) = (n+1)^2 * n * a(n-1) + 1.

A343863 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
Offset: 0

Views

Author

Seiichi Manyama, May 02 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,       1,         1,           1, ...
  2,   2,     2,       2,         2,           2, ...
  3,   5,     9,      17,        33,          65, ...
  4,  16,    82,     460,      2674,       15796, ...
  5,  65,  1313,   29441,    684545,    16175105, ...
  6, 326, 32826, 3680126, 427840626, 50547203126, ...
		

Crossrefs

Columns 0..3 give A000027(n+1), A000522, A006040, A217284.
Main diagonal gives A336247.
Cf. A291556.

Programs

  • Mathematica
    T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, (n!/j!)^k);

Formula

T(0,k) = 1 and T(n,k) = n^k * T(n-1,k) + 1 for n > 0.

A228513 a(n) = Sum_{k=0..n} 2^k*(n!/k!)^2.

Original entry on oeis.org

1, 3, 16, 152, 2448, 61232, 2204416, 108016512, 6913057024, 559957619456, 55995761946624, 6775487195543552, 975670156158275584, 164888256390748581888, 32318098252586722066432, 7271572106832012464979968, 1861522459348995191034937344, 537979990751859610209097023488
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2013

Keywords

Comments

Generally, Sum_{k=0..n} x^k*(n!/k!)^2 is asymptotic to BesselI(0,2*sqrt(x))*(n!)^2

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2*Sum[2^j/(j!)^2, {j, 0, n}], {n, 0, 20}]
    Total/@Table[2^k (n!/k!)^2,{n,0,20},{k,0,n}] (* Harvey P. Dale, Jun 10 2018 *)

Formula

a(n) = (n^2+2)*a(n-1) - 2*(n-1)^2*a(n-2).
a(n) ~ 2*Pi*BesselI(0,2*sqrt(2)) * n^(2*n+1)/exp(2*n).

A295610 a(n) = Sum_{k=0..n} (n!/(n - k)!)^k.

Original entry on oeis.org

1, 2, 7, 256, 345749, 25090776406, 139507578065088907, 82622801516492599819822772, 6985137485409222182920705065038896201, 109110989095384931538566720095053550173384985449034, 395940975233113726268241745444050219538058574725338743701918216111
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n!/(n - k)!)^k, {k, 0, n}], {n, 0, 10}]
    Table[Sum[(Gamma[n + 1]/Gamma[k + 1])^(n - k), {k, 0, n}], {n, 0, 10}]
    Table[Sum[(Binomial[n, k] k!)^k, {k, 0, n}], {n, 0, 10}]
  • PARI
    a(n) = sum(k=0, n, (n!/(n - k)!)^k); \\ Michel Marcus, Nov 25 2017

Formula

a(n) = Sum_{k=0..n} A219206(n,k)*A036740(k).
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n^2 + n/2) / exp(n^2 - 1/12). - Vaclav Kotesovec, Nov 25 2017

A368852 a(n) = (n!)^3 * Sum_{k=0..n} (-1)^k/(k!)^3.

Original entry on oeis.org

1, 0, 1, 26, 1665, 208124, 44954785, 15419491254, 7894779522049, 5755294271573720, 5755294271573720001, 7660296675464621321330, 13236992655202865643258241, 29081672863480695818238355476, 79800110337391029325246047426145
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!^3*sum(k=0, n, (-1)^k/k!^3);

Formula

a(n) = n^3 * a(n-1) + (-1)^n.
Showing 1-9 of 9 results.