cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336288 Numbers of squares formed by this procedure on n-th step: Step 1, draw a unit square. Step n, draw a unit square with center in every intersection of lines of the figure in step n-1.

Original entry on oeis.org

1, 10, 43, 116, 245, 446, 735, 1128, 1641, 2290, 3091, 4060, 5213, 6566, 8135, 9936, 11985, 14298, 16891, 19780, 22981, 26510, 30383, 34616, 39225, 44226, 49635, 55468, 61741, 68470, 75671, 83360, 91553, 100266, 109515, 119316, 129685, 140638, 152191, 164360, 177161
Offset: 1

Views

Author

Ilario Miriello, Jul 16 2020

Keywords

Crossrefs

Cf. A081585.

Programs

  • Magma
    [(8*n^3 - 12*n^2 + 7*n)/3 : n in [1..50]]; // Wesley Ivan Hurt, Jul 16 2020
    
  • Mathematica
    Table[(8*n^3 - 12*n^2 + 7*n)/3, {n, 1, 50}] (* Amiram Eldar, Jul 16 2020 *)
    LinearRecurrence[{4,-6,4,-1},{1,10,43,116},50] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    a(n) = (8*n^3 - 12*n^2 + 7*n)/3; \\ Michel Marcus, Jul 16 2020
    
  • PARI
    Vec(x*(1 + 3*x)^2 / (1 - x)^4 + O(x^40)) \\ Colin Barker, Jul 17 2020

Formula

a(n) = (8*n^3 - 12*n^2 + 7*n)/3.
From Colin Barker, Jul 17 2020: (Start)
G.f.: x*(1 + 3*x)^2 / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
E.g.f.: exp(x)*x*(3 + 12*x + 8*x^2)/3. - Stefano Spezia, Jul 23 2020
a(n+1) - a(n) = 8*n^2 + 1 = A081585(n). - Charlie Marion, Mar 21 2022

Extensions

More terms from Michel Marcus, Jul 16 2020