A336575
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 3^j * binomial(n,j) * binomial(k*n,j-1) for n > 0.
Original entry on oeis.org
1, 1, 3, 1, 3, 3, 1, 3, 12, 3, 1, 3, 21, 57, 3, 1, 3, 30, 192, 300, 3, 1, 3, 39, 408, 2001, 1686, 3, 1, 3, 48, 705, 6402, 22539, 9912, 3, 1, 3, 57, 1083, 14799, 109137, 267276, 60213, 3, 1, 3, 66, 1542, 28488, 338430, 1964010, 3287496, 374988, 3, 1, 3, 75, 2082, 48765, 817743, 8181597, 36718680, 41556585, 2381322, 3
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
3, 12, 21, 30, 39, 48, ...
3, 57, 192, 408, 705, 1083, ...
3, 300, 2001, 6402, 14799, 28488, ...
3, 1686, 22539, 109137, 338430, 817743, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[3^j * Binomial[n, j] * Binomial[k*n, j - 1], {j, 1, n}]/n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 27 2020 *)
-
T(n, k) = if(n==0, 1, sum(j=1, n, 3^j*binomial(n, j)*binomial(k*n, j-1))/n);
-
T(n, k) = my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k*(2+A)); polcoeff(A, n);
-
T(n, k) = sum(j=0, n, 2^(n-j)*binomial(n, j)*binomial(k*n+j+1, n)/(k*n+j+1));
-
T(n, k) = sum(j=0, n, 2^j*binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);
A336573
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (-1)^n * Sum_{j=0..n} (-2)^j * binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 8, 1, 1, 5, 21, 45, 16, 1, 1, 6, 34, 126, 197, 32, 1, 1, 7, 50, 267, 818, 903, 64, 1, 1, 8, 69, 484, 2279, 5594, 4279, 128, 1, 1, 9, 91, 793, 5105, 20540, 39693, 20793, 256, 1, 1, 10, 116, 1210, 9946, 56928, 192350, 289510, 103049, 512
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, ...
4, 11, 21, 34, 50, 69, ...
8, 45, 126, 267, 484, 793, ...
16, 197, 818, 2279, 5105, 9946, ...
-
T := (n,k) -> `if`(k=0, `if`(n=0, 1, 2^(n-1)), (-1)^n*(binomial(k*n+1, n)* hypergeom([-n, k*n+1], [(k-1)*n+2], 2)) / (k*n+1)):
seq(lprint(seq(simplify(T(n, k)), k=0..9)), n=0..6); # Peter Luschny, Jul 26 2020
-
T[n_, k_] := (-1)^n * Sum[(-2)^j * Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
-
T(n, k) = (-1)^n*sum(j=0, n, (-2)^j*binomial(n, j)*binomial(k*n+j+1, n)/(k*n+j+1));
-
T(n, k) = my(A=1+x*O(x^n)); for(i=0, n, A=1-x*A^k*(1-2*A)); polcoeff(A, n);
-
T(n, k) = (-1)^n*sum(j=0, n, (-2)^(n-j)*binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);
A336534
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 1, 2, 6, 2, 1, 2, 10, 22, 2, 1, 2, 14, 66, 90, 2, 1, 2, 18, 134, 498, 394, 2, 1, 2, 22, 226, 1482, 4066, 1806, 2, 1, 2, 26, 342, 3298, 17818, 34970, 8558, 2, 1, 2, 30, 482, 6202, 52450, 226214, 312066, 41586, 2, 1, 2, 34, 646, 10450, 122762, 881970, 2984206, 2862562, 206098, 2
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
2, 6, 10, 14, 18, 22, ...
2, 22, 66, 134, 226, 342, ...
2, 90, 498, 1482, 3298, 6202, ...
2, 394, 4066, 17818, 52450, 122762, ...
If Michael D. Weiner's conjecture on
A260332 is correct, column 4 is
A260332 for n > 0.
-
T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
-
T(n, k) = sum(j=0, n, binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);
A219536
G.f. satisfies A(x) = 1 + x*(A(x)^2 + 2*A(x)^3).
Original entry on oeis.org
1, 3, 24, 255, 3102, 40854, 566934, 8164263, 120864390, 1827982362, 28122626760, 438720097638, 6923868098820, 110346550539780, 1773394661610258, 28707809007278775, 467677404522668742, 7661583171651546786, 126137791939032756960, 2085923447593966281378
Offset: 0
G.f.: A(x) = 1 + 3*x + 24*x^2 + 255*x^3 + 3102*x^4 + 40854*x^5 +...
Related expansions:
A(x)^2 = 1 + 6*x + 57*x^2 + 654*x^3 + 8310*x^4 + 112560*x^5 +...
A(x)^3 = 1 + 9*x + 99*x^2 + 1224*x^3 + 16272*x^4 + 227187*x^5 +...
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 645*x^4 + 4791*x^5 +...+ A103210(n)*x^n +...
-
CoefficientList[1/x*InverseSeries[Series[4*x^2/(1-x-Sqrt[1-10*x+x^2]), {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 28 2013 *)
-
/* Formula A(x) = 1 + x*(A(x)^2 + 2*A(x)^3): */
{a(n)=my(A=1);for(i=1,n,A=1+x*(A^2+2*A^3) +x*O(x^n));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* Formula using Series Reversion: */
{a(n)=my(A=1,G=(1-x-sqrt(1-10*x+x^2+x^3*O(x^n)))/(4*x));A=(1/x)*serreverse(x/G);polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ Seiichi Manyama, Jul 26 2020
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+1, k)*binomial(3*n-k, n-k))/(2*n+1); \\ Seiichi Manyama, Jul 26 2020
A336577
a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n^2+k+1,n)/(n^2+k+1).
Original entry on oeis.org
1, 3, 24, 498, 18708, 1055838, 80682414, 7829287392, 924359573112, 128815914107370, 20717986773639696, 3779867347688995698, 771666206195918154156, 174345811623642373266360, 43198501381068549879753648, 11648965476456962547182140512, 3396661425137920919866033312752
Offset: 0
-
a[n_] := Sum[2^k * Binomial[n, k] * Binomial[n^2 + k + 1, n]/(n^2 + k + 1), {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Jul 27 2020 *)
-
a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n^2+k+1, n)/(n^2+k+1));
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(n^2+1, k)*binomial((n+1)*n-k, n-k))/(n^2+1);
A336539
G.f. A(x) satisfies A(x) = 1 + x * A(x)^3 * (1 + 2 * A(x)).
Original entry on oeis.org
1, 3, 33, 498, 8691, 164937, 3305868, 68855862, 1475636055, 32327521077, 720713175441, 16298128820568, 372946723698516, 8619565476744156, 200920644131737992, 4718057697038124750, 111505342455507462207, 2650261296098965752669, 63308992564445668959795
Offset: 0
-
a[n_] := Sum[2^k * Binomial[n, k] * Binomial[3*n + k + 1, n]/(3*n + k + 1), {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jul 27 2020 *)
-
a(n) = my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^3*(1+2*A)); polcoeff(A, n);
-
a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1));
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n+1, k)*binomial(4*n-k, n-k))/(3*n+1); \\ Seiichi Manyama, Jul 26 2020
A336572
G.f. A(x) satisfies A(x) = 1 + x * A(x)^4 * (1 + 2 * A(x)).
Original entry on oeis.org
1, 3, 42, 822, 18708, 464115, 12175368, 332156784, 9328004700, 267870927324, 7829893576878, 232189300430454, 6968123350684692, 211232335919261178, 6458598626291716128, 198949096401788859636, 6168233789851179030684, 192334850789654814053700, 6027727888877572168027368
Offset: 0
-
a[n_] := Sum[2^k * Binomial[n, k] * Binomial[4*n + k + 1, n]/(4*n + k + 1), {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jul 27 2020 *)
-
a(n) = my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^4*(1+2*A)); polcoeff(A, n);
-
a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(4*n+k+1, n)/(4*n+k+1));
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+1, k)*binomial(5*n-k, n-k))/(4*n+1); \\ Seiichi Manyama, Jul 26 2020
Showing 1-7 of 7 results.
Comments