A000316 Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches.
1, 0, 4, 80, 4752, 440192, 59245120, 10930514688, 2649865335040, 817154768973824, 312426715251262464, 145060238642780180480, 80403174342119992692736, 52443098500204184915312640, 39764049487996490505336537088
Offset: 0
Examples
There are 80 ways of achieving zero matches when there are 2 cards of each kind and 3 kinds of card so a(3)=80. Among the 24 (multiset) permutations of {1,1',2,2'}, only {2,2',1,1'}, {2',2,1,1'}, {2,2',1',1} and {2',2,1',1} have no fixed points, thus a(2)=4.
References
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 187.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- L. I. Nicolaescu, Derangements and asymptotics of the Laplace transforms of large powers of a polynomial, New York J. Math. 10 (2004) 117-131.
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
- Index entries for sequences related to card matching
Programs
-
Maple
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,2), n=0..18);
-
Mathematica
(* b = A000459 *) b[n_] := b[n] = Switch[n, 0, 1, 1, 0, 2, 1, _, n(2n-1) b[n-1] + 2n(n-1) b[n-2] - (2n-1)]; a[n_] := b[n] * 2^n; Array[a, 14] (* Jean-François Alcover, Oct 30 2019 *)
-
PARI
a(n)=if(n==0, 1, round(2^(n/2+3/4)/Pi^.5*exp(-2)*n!*besselk(1/2+n,2^.5))<
M. F. Hasler, Sep 27 2015 -
PARI
\\ Illustration of the multiset-fixed-point interpretation count(n,c=ceil(vector(n,i,i)/2))=sum(k=1,n!,!setsearch(Set(ceil(Vec(numtoperm(n,k))/2)-c),0)) a(n) = count(2*n) \\ M. F. Hasler, Sep 30 2015
Formula
a(n) = A000459(n)*2^n.
G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (2 in this case) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*Sum_{j=0..k} x^j/((k-j)!^2*j!))^n (see Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.
From Dan Dima, Dec 17 2006: (Start)
a(n) = n! * Sum_{a,b >= 0, a+b <= n} (-1)^b * 2^(a+2*b) * (2*n-2*a-b)! / (a! * b! * (n-a-b)!).
a(n) = n * a(n-1) + n! * 4^n * Sum_{a=0..n} (-1)^a / (a! * 2^a). (End)
a(n) = 2^n * round(2^(n/2 + 3/4)*Pi^(-1/2)*exp(-2)*n!*BesselK(1/2+n,2^(1/2))) for n > 0. - Mark van Hoeij, Oct 30 2011
Recurrence: (2*n-3)*a(n) = 2*(n-1)*(2*n-1)^2*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2) - 16*(n-2)*(n-1)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 07 2013
From Peter Bala, Jul 07 2014: (Start)
a(n) = Integral_{x>=0} exp(-x)*(x^2 - 4*x + 2)^n dx. Cf. A000166(n) = Integral_{x>=0} exp(-x)*(x - 1)^n dx.
Asymptotic: a(n) ~ (2*n)!*exp(-2)*( 1 - 1/(2*n) - 23/(96*n^2) + O(1/n^3) ). See Nicolaescu. (End)
Extensions
Formulae, more terms etc. from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
Edited by M. F. Hasler, Sep 27 2015 and N. J. A. Sloane, Oct 02 2015
a(0)=1 prepended by Andrew Howroyd, Oct 09 2020
Comments