cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338620 Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order.

Original entry on oeis.org

1, 0, 2, 4, 0, 8, 12386, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Nov 04 2020

Keywords

Comments

A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
For orders n = 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A123565(2n+1) for n < 6. For n=6 (order 13), this is not true and there are 12386 inequivalent squares; of these 10 are cyclic (in all directions) and 1560 are semi-cyclic (A343867).
Pandiagonal Latin squares exist only for odd orders not divisible by 3. This is because the positions of each symbol are a solution to the toroidal n-queens problem which only has solutions for these sizes. - Andrew Howroyd, May 26 2021

Examples

			Example of a cyclic pandiagonal Latin square of order 5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
   0  1  2  3  4  5  6  7  8  9 10
   2  3  4  5  6  7  8  9 10  0  1
   4  5  6  7  8  9 10  0  1  2  3
   6  7  8  9 10  0  1  2  3  4  5
   8  9 10  0  1  2  3  4  5  6  7
  10  0  1  2  3  4  5  6  7  8  9
   1  2  3  4  5  6  7  8  9 10  0
   3  4  5  6  7  8  9 10  0  1  2
   5  6  7  8  9 10  0  1  2  3  4
   7  8  9 10  0  1  2  3  4  5  6
   9 10  0  1  2  3  4  5  6  7  8
For order 13 there is a square
   7  1  0  3  6  5 12  2  8  9 10 11  4
   2  3  4 10  0  7  6  9 12 11  5  8  1
   4 11  1  7  8  9 10  3  6  0 12  2  5
   6  5  8 11 10  4  7  0  1  2  3  9 12
   8  9  2  5 12 11  1  4  3 10  0  6  7
   3  6 12  0  1  2  8 11  5  4  7 10  9
  10  0  3  2  9 12  5  6  7  8  1  4 11
   1  7 10  4  3  6  9  8  2  5 11 12  0
  11  4  5  6  7  0  3 10  9 12  2  1  8
   5  8  7  1  4 10 11 12  0  6  9  3  2
  12  2  9  8 11  1  0  7 10  3  4  5  6
   9 10 11 12  5  8  2  1  4  7  6  0  3
   0 12  6  9  2  3  4  5 11  1  8  7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu).
		

Crossrefs

Cf. A071607 (rows are cyclic), A123565, A342306, A343867 (semicyclic).

Formula

a(n) >= A123565(2n+1) + A343867(n). - Andrew Howroyd, May 26 2021
a(n) = A342306(n) / (2n+1)!. - Eduard I. Vatutin, Jun 13 2021

Extensions

Zero terms for even orders removed by Andrew Howroyd, May 26 2021