A338620 Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order.
1, 0, 2, 4, 0, 8, 12386, 0
Offset: 0
Examples
Example of a cyclic pandiagonal Latin square of order 5: 0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2 Example of a cyclic pandiagonal Latin square of order 7: 0 1 2 3 4 5 6 2 3 4 5 6 0 1 4 5 6 0 1 2 3 6 0 1 2 3 4 5 1 2 3 4 5 6 0 3 4 5 6 0 1 2 5 6 0 1 2 3 4 Example of a cyclic pandiagonal Latin square of order 11: 0 1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 0 1 4 5 6 7 8 9 10 0 1 2 3 6 7 8 9 10 0 1 2 3 4 5 8 9 10 0 1 2 3 4 5 6 7 10 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 0 3 4 5 6 7 8 9 10 0 1 2 5 6 7 8 9 10 0 1 2 3 4 7 8 9 10 0 1 2 3 4 5 6 9 10 0 1 2 3 4 5 6 7 8 For order 13 there is a square 7 1 0 3 6 5 12 2 8 9 10 11 4 2 3 4 10 0 7 6 9 12 11 5 8 1 4 11 1 7 8 9 10 3 6 0 12 2 5 6 5 8 11 10 4 7 0 1 2 3 9 12 8 9 2 5 12 11 1 4 3 10 0 6 7 3 6 12 0 1 2 8 11 5 4 7 10 9 10 0 3 2 9 12 5 6 7 8 1 4 11 1 7 10 4 3 6 9 8 2 5 11 12 0 11 4 5 6 7 0 3 10 9 12 2 1 8 5 8 7 1 4 10 11 12 0 6 9 3 2 12 2 9 8 11 1 0 7 10 3 4 5 6 9 10 11 12 5 8 2 1 4 7 6 0 3 0 12 6 9 2 3 4 5 11 1 8 7 10 that is pandiagonal but not cyclic (Dabbaghian and Wu).
Links
- A. O. L. Atkin, L. Hay, and R. G. Larson, Enumeration and construction of pandiagonal Latin squares of prime order, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.
- Vahid Dabbaghian and Tiankuang Wu, Constructing non-cyclic pandiagonal Latin squares of prime orders, Journal of Discrete Algorithms 30, 2015.
- Vahid Dabbaghian and Tiankuang Wu, Constructing Pandiagonal Latin Squares from Linear Cellular Automaton on Elementary Abelian Groups, Journal of Combinatorial Designs 23(5).
Formula
a(n) = A342306(n) / (2n+1)!. - Eduard I. Vatutin, Jun 13 2021
Extensions
Zero terms for even orders removed by Andrew Howroyd, May 26 2021
Comments