A338953
Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.
Original entry on oeis.org
1, 68774446639102959610154176, 5523164445430505961199114292414803649442426, 5448873034189827051954635848284422749083650351583379456, 10956401461402941741829572441752281718329313621842215239237500000
Offset: 1
Cf.
A338952 (oriented),
A338954 (chiral),
A338955 (achiral),
A338957 (exactly n colors),
A338949 (vertices, facets),
A063843 (5-cell),
A331359 (8-cell edges, 16-cell faces),
A331355 (16-cell edges, 8-cell faces),
A338965 (120-cell, 600-cell).
A338956
Number of oriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
Original entry on oeis.org
1, 137548893254081168086800766, 11046328890861010626464488614428032600986342, 10897746068335468788318134977474134922662053604436974448, 21912802868317153141871319582922663027477920477404414535105616050
Offset: 1
Cf.
A338957 (unoriented),
A338958 (chiral),
A338959 (achiral),
A338952 (up to n colors),
A338948 (vertices, facets),
A331350 (5-cell),
A331358 (8-cell edges, 16-cell faces),
A331354 (16-cell edges, 8-cell faces),
A338980 (120-cell, 600-cell).
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
Drop[CoefficientList[bp[8]/6+bp[12]/4+bp[16]/12+bp[18]/18+7bp[24]/48+bp[32]/12+bp[36]/18+19bp[48]/576+bp[50]/8+bp[96]/576,x],1]
A338958
Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
Original entry on oeis.org
68774446614978208476646592, 5523164445430504871588714239322107782006441, 5448873034167734394145221152621861950913444709790439644, 10956401434158576570935650756489255491646473924447332613392130825
Offset: 2
Cf.
A338956 (oriented),
A338957 (unoriented),
A338959 (achiral),
A338954 (up to n colors),
A338950 (vertices, facets),
A331352 (5-cell),
A331360 (8-cell edges, 16-cell faces),
A331356 (16-cell edges, 8-cell faces),
A338982 (120-cell, 600-cell).
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[8]/12+bp[12]/8-bp[16]/24-bp[18]/18-bp[20]/6-5bp[24]/96+bp[32]/24+bp[36]/36-5bp[48]/1152+bp[50]/16-bp[52]/96-bp[60]/96+bp[96]/1152,x],2]
A338959
Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
Original entry on oeis.org
1, 24124751133507582, 883287060135783817036973460, 27692672230411020835164184856095160, 18069944152044184972628509749308321354400, 1018093811663859334508633754250963606821400320
Offset: 1
Cf.
A338956 (oriented),
A338957 (unoriented),
A338958 (chiral),
A338955 (up to n colors),
A338951 (vertices, facets),
A331353 (5-cell),
A331361 (8-cell edges, 16-cell faces),
A331357 (16-cell edges, 8-cell faces),
A338983 (120-cell, 600-cell).
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[16]/6+bp[18]/6+bp[20]/3+bp[24]/4+bp[48]/24+bp[52]/48+bp[60]/48,x],1]
Showing 1-4 of 4 results.
Comments