cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339987 The number of labeled graphs on 2n vertices that share the same degree sequence as any unrooted binary tree on 2n vertices.

Original entry on oeis.org

1, 4, 90, 8400, 1426950, 366153480, 134292027870, 67095690261600, 43893900947947050, 36441011093916429000, 37446160423265535041100, 46669357647008722700474400, 69367722399061403579194432500, 121238024532751529573125745790000, 246171692450596203263023527657431250
Offset: 1

Views

Author

Atabey Kaygun, Dec 25 2020

Keywords

Comments

An unrooted binary tree is a tree in which all non-leaf vertices have degree 3. With 2n vertices there will be n+1 leaves and n-1 internal vertices.

Crossrefs

Programs

  • PARI
    \\ See Links in A295193 for GraphsByDegreeSeq.
    a(n) = {if(n==1, 1, my(d=2*n-4, M=GraphsByDegreeSeq(n-1, 3, (p,r)-> subst(deriv(p),x,1) >= d-6*r), z=(2*n)!/(n-1)!); sum(i=1, matsize(M)[1], my(p=M[i,1], r=(subst(deriv(p), x, 1)-d)/2); M[i,2]*z / (2^polcoef(p,1) * 6^polcoef(p,0) * 2^r * r!)))} \\ Andrew Howroyd, Mar 01 2023

Formula

Conjectured recurrence: 32*(1 + n)*(2 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(11589 + 10844*n + 3300*n^2 + 328*n^3)*a(n) - 8*(2 + n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(148119 + 232328*n + 129460*n^2 + 30664*n^3 + 2624*n^4)*a(n+1) - 16*(3 + n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(341634 + 712135*n + 569267*n^2 + 219308*n^3 + 40852*n^4 + 2952*n^5)*a(n+2) + 8*(4 + n)*(7 + 2*n)*(9 + 2*n)*(527520 + 1057879*n + 818282*n^2 + 306380*n^3 + 55672*n^4 + 3936*n^5)*a(n+3) - 2*(5 + n)*(9 + 2*n)*(601452 + 1117119*n + 786236*n^2 + 264028*n^3 + 42472*n^4 + 2624*n^5)*a(n+4) + 3*(4 + n)*(6 + n)*(3717 + 5228*n + 2316*n^2 + 328*n^3)*a(n+5) = 0. - Manuel Kauers and Christoph Koutschan, Mar 01 2023
Conjecture: a(n) ~ 2^(5*n - 1/2) * n^(2*n - 3/2) / (sqrt(Pi) * 3^(n-1) * exp(2*n + 21/16)), based on the recurrence by Manuel Kauers and Christoph Koutschan. - Vaclav Kotesovec, Mar 07 2023