cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A256191 Decimal expansion of Gamma(1/10).

Original entry on oeis.org

9, 5, 1, 3, 5, 0, 7, 6, 9, 8, 6, 6, 8, 7, 3, 1, 8, 3, 6, 2, 9, 2, 4, 8, 7, 1, 7, 7, 2, 6, 5, 4, 0, 2, 1, 9, 2, 5, 5, 0, 5, 7, 8, 6, 2, 6, 0, 8, 8, 3, 7, 7, 3, 4, 3, 0, 5, 0, 0, 0, 0, 7, 7, 0, 4, 3, 4, 2, 6, 5, 3, 8, 3, 3, 2, 2, 8, 2, 1, 0, 1, 1, 5, 3, 7, 1, 6, 3, 7, 9, 4, 2, 6, 6, 4, 4, 7, 2, 0, 9, 7, 9, 7, 3
Offset: 1

Views

Author

Keywords

Examples

			9.513507698668731836292487177265402192550578626088377...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/10); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/10),100);
  • Mathematica
    RealDigits[Gamma[1/10],10,100][[1]]
  • PARI
    gamma(1/10)
    

Formula

From Vaclav Kotesovec, Apr 10 2024: (Start)
Equals 5^(1/4) * sqrt(1 + sqrt(5)) * Gamma(1/5) * Gamma(2/5) / (2^(7/10) * sqrt(Pi)).
Equals 2^(4/5) * sqrt(Pi) * Gamma(1/5) / Gamma(3/5). (End)

A340722 Decimal expansion of Gamma(4/5).

Original entry on oeis.org

1, 1, 6, 4, 2, 2, 9, 7, 1, 3, 7, 2, 5, 3, 0, 3, 3, 7, 3, 6, 3, 6, 3, 2, 0, 9, 3, 8, 2, 6, 8, 4, 5, 8, 6, 9, 3, 1, 4, 1, 9, 6, 1, 7, 6, 8, 8, 9, 1, 1, 8, 7, 7, 5, 2, 9, 8, 4, 8, 9, 4, 4, 6, 7, 8, 6, 1, 8, 3, 5, 4, 6, 6, 0, 7, 8, 9, 5, 3, 7, 4, 4, 7, 5
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.164229713725303373636...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(4/5),120) ;
  • Mathematica
    RealDigits[Gamma[4/5], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A175380 = Pi/A019845. [DLMF (5.5.3)]
this * A340723 * 2^(1/10)/sqrt(2*Pi) = A340721. [DLMF (5.5.5)]

A340724 Decimal expansion of Gamma(7/10).

Original entry on oeis.org

1, 2, 9, 8, 0, 5, 5, 3, 3, 2, 6, 4, 7, 5, 5, 7, 7, 8, 5, 6, 8, 1, 1, 7, 1, 1, 7, 9, 1, 5, 2, 8, 1, 1, 6, 1, 7, 7, 8, 4, 1, 4, 1, 1, 7, 0, 5, 5, 3, 9, 4, 6, 2, 4, 7, 9, 2, 1, 6, 4, 5, 3, 8, 8, 2, 5, 4, 1, 6, 8, 1, 5, 0, 8, 1, 8, 9, 7, 5, 7, 9, 8, 6
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.29805533264755778568...
		

Crossrefs

Programs

Formula

this * A340723 = Pi/A019863 [DLMF (5.5.3)]
this * A175380 * 2^(9/10)/sqrt(2*Pi) = 2*A246745. [DLMF (5.5.5)]

A371859 Decimal expansion of Integral_{x=0..oo} 1 / sqrt(1 + x^5) dx.

Original entry on oeis.org

1, 5, 4, 9, 6, 9, 6, 2, 7, 7, 7, 4, 7, 3, 5, 3, 0, 2, 9, 5, 6, 2, 1, 9, 5, 3, 8, 3, 1, 7, 0, 8, 8, 2, 1, 2, 8, 9, 1, 9, 6, 9, 7, 5, 8, 2, 2, 0, 1, 1, 7, 1, 6, 5, 4, 0, 0, 9, 0, 5, 3, 6, 0, 9, 7, 7, 2, 7, 3, 1, 4, 7, 8, 0, 7, 1, 4, 9, 7, 9, 8, 2, 2, 6, 8, 7, 5, 2, 8, 3, 4, 0, 5, 3, 0, 6, 5, 7, 6, 9, 7, 1, 7, 6, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.54969627774735302956219538317088212891969758...
		

Crossrefs

Decimal expansions of Integral_{x=0..oo} 1 / sqrt(1 + x^k) dx: A118292 (k=3), A093341 (k=4), this sequence (k=5).

Programs

  • Mathematica
    RealDigits[Gamma[3/10] Gamma[6/5]/Sqrt[Pi], 10, 105][[1]]
    RealDigits[2^(2/5) * Gamma[1/5]^2 / (5*GoldenRatio*Gamma[2/5]), 10, 105][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)

Formula

Equals Gamma(3/10) * Gamma(6/5) / sqrt(Pi).
Equals 2^(2/5) * Gamma(1/5)^2 / (5 * phi * Gamma(2/5)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 09 2024
Showing 1-4 of 4 results.