cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A175380 Decimal expansion of Gamma(1/5).

Original entry on oeis.org

4, 5, 9, 0, 8, 4, 3, 7, 1, 1, 9, 9, 8, 8, 0, 3, 0, 5, 3, 2, 0, 4, 7, 5, 8, 2, 7, 5, 9, 2, 9, 1, 5, 2, 0, 0, 3, 4, 3, 4, 1, 0, 9, 9, 9, 8, 2, 9, 3, 4, 0, 3, 0, 1, 7, 7, 8, 8, 8, 5, 3, 1, 3, 6, 2, 3, 0, 0, 3, 9, 2, 7, 3, 1, 0, 6, 4, 4, 4, 9, 9, 8, 9, 7, 4, 0, 3, 9, 4, 0, 8, 2, 8, 7, 7, 8, 5, 0, 7, 4, 5, 6, 9, 1, 2
Offset: 1

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Examples

			Equals 4.590843711998803053204758275929152...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/5); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/5));
  • Mathematica
    RealDigits[Gamma[1/5],10,120][[1]] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    gamma(1/5) \\ G. C. Greubel, Jan 15 2017
    

Formula

Equals Pi * sqrt(2) * sqrt(5 + sqrt(5)) / (sqrt(5) * Gamma(4/5) ) = A063448 * sqrt(5 + A002163) / (A002163 * Gamma(4/5)) where Gamma(4/5) = A340722.

A256191 Decimal expansion of Gamma(1/10).

Original entry on oeis.org

9, 5, 1, 3, 5, 0, 7, 6, 9, 8, 6, 6, 8, 7, 3, 1, 8, 3, 6, 2, 9, 2, 4, 8, 7, 1, 7, 7, 2, 6, 5, 4, 0, 2, 1, 9, 2, 5, 5, 0, 5, 7, 8, 6, 2, 6, 0, 8, 8, 3, 7, 7, 3, 4, 3, 0, 5, 0, 0, 0, 0, 7, 7, 0, 4, 3, 4, 2, 6, 5, 3, 8, 3, 3, 2, 2, 8, 2, 1, 0, 1, 1, 5, 3, 7, 1, 6, 3, 7, 9, 4, 2, 6, 6, 4, 4, 7, 2, 0, 9, 7, 9, 7, 3
Offset: 1

Views

Author

Keywords

Examples

			9.513507698668731836292487177265402192550578626088377...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/10); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/10),100);
  • Mathematica
    RealDigits[Gamma[1/10],10,100][[1]]
  • PARI
    gamma(1/10)
    

Formula

From Vaclav Kotesovec, Apr 10 2024: (Start)
Equals 5^(1/4) * sqrt(1 + sqrt(5)) * Gamma(1/5) * Gamma(2/5) / (2^(7/10) * sqrt(Pi)).
Equals 2^(4/5) * sqrt(Pi) * Gamma(1/5) / Gamma(3/5). (End)

A025750 5th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 10, 150, 2625, 49875, 997500, 20662500, 439078125, 9513359375, 209293906250, 4661546093750, 104884787109375, 2380077861328125, 54401779687500000, 1251240932812500000, 28934946571289062500, 672311993862304687500, 15687279856787109375000, 367412607172119140625000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(6-(1-25x)^(1/5))/5,{x,0,20}],x] (* Harvey P. Dale, Dec 06 2012 *)
    a[0] = 1; a[n_] := ((-5)^(n - 1)*Sum[5^(n - k)*StirlingS1[n, k], {k, 1, n}])/n!; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 19 2013, after Vladimir Kruchinin *)
    a[n_] := 25^(n-1) * Pochhammer[4/5, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a(n):=if n=0 then 1 else (sum((-1)^(n-k-1)*binomial(n+k-1,n-1)*sum(2^j*binomial(k,j)*sum(binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i),i,j,n-k+j-1),j,0,k),k,0,n-1))/(n); /* Vladimir Kruchinin, Dec 10 2011 */
    
  • Maxima
    a(n):=if n=0 then 1 else -binomial(1/5,n)*(-25)^n/5; /* Tani Akinari, Sep 17 2015 */

Formula

G.f.: (6-(1-25*x)^(1/5))/5.
a(n) = 5^(n-1)*4*A034301(n-1)/n!, n >= 2, where 4*A034301(n-1) = (5*n-6)(!^5) = Product_{j=2..n} (5*j-6). - Wolfdieter Lang
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n+k-1,n-1) * Sum_{j=0..k} 2^j*binomial(k,j) * Sum_{i=j..n-k+j-1} binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i)/n, n > 0, a(0) = 1. - Vladimir Kruchinin, Dec 10 2011
a(n) = ((-5)^(n-1)*Sum_{k=1..n} (5)^(n-k)*stirling1(n,k))/n!, n>0, a(0) = 1. - Vladimir Kruchinin, Mar 19 2013
From Karol A. Penson, Feb 05 2025: (Start)
a(n) without the initial 1 (i.e., a(n) for n >= 1) is given by
a(n+1) = 5^(2*n)*gamma(n + 4/5)/(gamma(4/5)*(n + 1)!), n >= 0.
a(n+1) = Integral_{x=0..25} x^n*W(x) dx, n >= 0,
where W(x) = sin(Pi/5)*5^(2/5)*(1 - x/25)^(1/5)/(5*Pi*x^(1/5)). W(x) is a positive function on x = (0, 25), is singular at x = 0 with the singularity (x)^(-1/5), and it goes to zero at x = 25. (End)
a(n) ~ 25^(n-1) / (Gamma(4/5) * n^(6/5)). - Amiram Eldar, Aug 20 2025

A340723 Decimal expansion of Gamma(3/10).

Original entry on oeis.org

2, 9, 9, 1, 5, 6, 8, 9, 8, 7, 6, 8, 7, 5, 9, 0, 6, 2, 8, 3, 1, 2, 5, 1, 6, 5, 1, 5, 9, 0, 4, 9, 1, 7, 7, 9, 1, 1, 1, 2, 8, 0, 6, 0, 2, 4, 9, 2, 1, 7, 1, 5, 1, 1, 2, 7, 4, 4, 1, 1, 9, 6, 5, 0, 9, 5, 6, 3, 8, 8, 7, 6, 7, 8, 7, 6, 3, 2, 0, 2, 1, 7, 9
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			2.991568987687590628312...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(3/10),120) ;
  • Mathematica
    RealDigits[Gamma[3/10], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A340724 = Pi/A019863 [DLMF (5.5.3)]
this * A340722 * 2^(1/10)/sqrt(2*Pi) = A340721. [DLMF (5.5.5)]

A340725 Decimal expansion of Gamma(9/10).

Original entry on oeis.org

1, 0, 6, 8, 6, 2, 8, 7, 0, 2, 1, 1, 9, 3, 1, 9, 3, 5, 4, 8, 9, 7, 3, 0, 5, 3, 3, 5, 6, 9, 4, 4, 8, 0, 7, 7, 8, 1, 6, 9, 8, 3, 8, 7, 8, 5, 0, 6, 0, 9, 7, 3, 1, 7, 9, 0, 4, 9, 3, 7, 0, 6, 8, 3, 9, 8, 1, 5, 7, 2, 1, 7, 7, 0, 2, 5, 4, 4, 7, 5, 6, 6, 9, 1
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.06862870211931935489..
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(9/10),120) ;
  • Mathematica
    RealDigits[Gamma[9/10], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A256191 = Pi/A019827 . [DLMF (5.5.3)]
A246745 * this *2^(3/10) /sqrt(2*Pi) = A340722 . [DLMF (5.5.5)]

A377405 Decimal expansion of Pi*csc(Pi/5).

Original entry on oeis.org

5, 3, 4, 4, 7, 9, 6, 6, 6, 0, 5, 7, 7, 9, 7, 5, 5, 6, 7, 1, 2, 5, 9, 2, 1, 8, 6, 2, 5, 3, 4, 4, 1, 3, 1, 9, 9, 5, 0, 7, 2, 5, 4, 6, 2, 6, 3, 3, 2, 6, 2, 2, 9, 3, 0, 0, 3, 3, 3, 1, 6, 2, 8, 1, 8, 9, 8, 1, 0, 5, 7, 4, 8, 3, 9, 5, 3, 7, 4, 5, 6, 6, 1, 3, 9, 0, 1, 9, 3, 8, 9, 7, 1, 3, 4, 8, 3, 3, 0, 7
Offset: 1

Views

Author

Stefano Spezia, Oct 27 2024

Keywords

Examples

			5.344796660577975567125921862534413199507254626...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi*Csc[Pi/5],10,100][[1]]

Formula

Equals Gamma(1/5)*Gamma(4/5) = 2*Pi*sqrt(5)*sqrt(2+phi)/5 (see Finch).
Equals Integral_{x=0..oo} log(1 + x^(-5)) dx (see Shamos).
Equals sqrt(2*(1 + 1/sqrt(5)))*Pi.
Equals 10 * Sum_{n>=1} (-1)^(n+1)/A345019(n). - Amiram Eldar, Oct 27 2024
Equals 5*A352324. - Hugo Pfoertner, Oct 28 2024
Showing 1-6 of 6 results.